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Abstract: 

 

Robustness has long been recognized as an important parameter for evaluating game-theoretic 

results, but talk of ‘robustness’ generally remains vague.  What we offer here is a graphic 

measure for a particular kind of robustness (‘matrix robustness’), using a three-dimensional 

display of the universe of 2 x 2 game theory.  In such a measure specific games appear as 

specific volumes (Prisoner’s Dilemma, Stag Hunt, etc.), allowing a graphic image of the extent 

of particular game-theoretic effects in terms of those games.  The measure also allows for an 

easy comparison between different effects in terms of matrix robustness.  Here we use the 

measure to compare the robustness of Tit for Tat’s well-known success in spatialized games 

(Axelrod 1984, Grim, Mar, & St. Denis 1998) with the robustness of a recent game-theoretic 

model of the contact hypothesis regarding prejudice reduction (Grim, Selinger, Braynen, 

Rosenberger, Au, Louie, & Connolly 2005).   
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I.  Model Realism and Robustness 

 

 ‘Robustness’ is a primary criterion for evaluating modeling results in general, and game-

theoretic results in particular.  On seeing a new result, one of the first things a researcher wants 

to know is how ‘robust’ that result is--roughly, how well it stands up in variations of the model.   

The issue at hand is whether very specific choices of parameter values are crucial to the effect, or 

whether it holds across a broad range of values.  Does the result depend on the particular 

algorithm for reproduction, the specifics of spatial organization or the like, or is it a result that 

can be expected to appear despite important variations in model structure? 

 In trying to capture a real phenomenon—physical, chemical, biological, or social—

modelers work quite deliberately with a simpler structure.  The target reality is often too rich, 

complex, or messy to be studied directly; the hope is to understand and perhaps predict aspects 

of that complex reality by working with something that is relevantly analogous but easier to 

grasp.  How well a model captures a target—how relevantly analogous any model is—will 

therefore always be a matter of degree.  It will, moreover, remain open for debate whether the 

model captures the reality well enough—whether it captures essential features rather than 

inessential details, or deep mechanisms rather than superficial appearances.  That crucial 

question regarding models is one that the models themselves cannot answer.
1
 

 In building a model, there is always some latitude: investigators may use one core 

algorithm rather than another, concentrate on one set of parameters rather than others, and 

standardly test variables within specific ranges.  The precise model selected is thus always one 

out of a range of possible models.  If the demonstrated effect shows up only in the specific model 

selected, one can be no more confident of the reality of the effect than one is confident of the 

precise accuracy of that model.  Given the inherent limitations of modeling, an effect that is 

‘fragile’—one that is limited to specific choices in a specific model—can therefore be rightly 
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regarded with suspicion.   The touted result may be an artifact of the specific modeling 

conventions chosen; since one cannot be sure that those are accurate, doubt remains as to 

whether the effect is real.   

 ‘Robust’ effects, in contrast, hold for a wide range of models.  One reason that robustness 

is a virtue is that it may raise confidence in the realism of a model.  It is generally a better bet 

that the essentials of a phenomenon will be captured somewhere in a range of possible models 

than that a single model chosen in that range will happen to capture them precisely.  The fact that 

a phenomenon appears robustly across a range of models therefore increases one’s confidence 

that it is real.  It is still possible, of course, that none of the models in the range turns out to be 

adequate.  Robustness rightly builds our confidence in the reality of a modeled phenomenon 

even though it does not offer any conclusive proof.  Conclusive proofs in modeling, as in many 

aspects of science, are too much to hope for.  

What we offer here is a new measure for a particular kind of robustness: a three-

dimensional display of the universe of game theory that allows one to compare the prevalence of 

effects across variations in matrix values (what we will refer to as ‘matrix robustness’).  We 

think this constitutes an important measure for game theoretic results, and hope that it will also 

suggest other measures needed regarding other aspects of robustness.   

 

II.  Robustness in game theory 

 

 Though robustness has long been recognized as an important parameter for evaluating 

game-theoretic results, talk of ‘robustness’ generally remains vague.   

The history of Tit for Tat (TFT), widely respected as a ‘robust’ strategy in the iterated 

Prisoner’s Dilemma, serves as a simple example.  TFT appears as the winner among significantly 

different groups of submitted strategies in Robert Axelrod’s two round-robin computer 

tournaments (Axelrod 1980a, 1980b).  It appears again as the winner in the significantly different 

biological replication model constructed by Axelrod and William Hamilton (Axelrod & 

Hamilton 1981).  TFT is once again the winner in a spatialized cellular automata instantiation of 

the iterated Prisoner’s Dilemma using the basic reactive strategies (Grim 1995, 1996; Grim, Mar 

& St. Denis 1998).  Axelrod asks “…does [TFT] do well in a wide variety of environments?  

That is to say, is it robust?” (Axelrod 1984, 48).  These results seem to indicate that the answer is 

‘yes’. 

TFT’s success in this range of different models raises one’s confidence that TFT is 

tagging something important for a wide range of competitive interactions, both in formal game-

theory and in the biological, social, and economic interactions that game-theory is often used to 

model.  But the question of how robust this history shows TFT to be has no precise answer, nor 

does such a history offer any precise way of comparing the robustness of this TFT effect with 

others.    

 In what follows, we want to make at least some talk of robustness and of comparative 

robustness more graphic and more precise.  Here we introduce a formal measure for robustness 

across one of the standard parameters in game theory: the payoff matrix.  This does not and 

cannot offer a measure of robustness for all aspects of interest—robustness across differences in 

reproductive algorithm, for example.  What the measure does show, however, graphically and 

immediately, is comparative robustness of game-theoretic effects across changes in payoff 

matrix. 
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 In recent work, Robert Axelrod and Ross Hammond demonstrate robustness of a game-

theoretic result regarding ethnocentrism by showing that the result remains when important 

parameters of the model are either doubled or halved.   

 

Not only does ethnocentric behavior evolve in this model, but its emergence is robust 

under a wide range of parameters.  When any of the following parameters are either 

halved or doubled, at least two-thirds of strategies are ethnocentric and at least two-thirds 

of the actual choices are ethnocentric: cost of helping, lattice width, number of groups, 

immigration rate, mutation rate, or duration of the run… (Axelrod  & Hammond 2003, 

13) 

 

We applaud this as a move in precisely the right direction, toward a more formal measure of an 

intuitively important evaluational criterion for models.  The specific ‘doubling and halving’ 

measure that Axelrod and Hammond propose, however, is dependant in unfortunate ways on the 

initial parameters tested.  For one set of initial parameters, the ‘doubling and halving’ measure 

would vindicate a phenomenon as robust, while for another set it would not.  Unfortunately, 

therefore, the measure designed to assure us that a result is robust is itself still fragile with 

respect to the base model chosen. 

 The approach we outline here removes this difficulty, at least for the parameter of payoff 

matrix, by offering a standard measure of robustness in terms of the universe of game theory as a 

whole.  Since that universe of payoff possibilities remains constant, the measure is not sensitive 

to the particular payoff values with which we first test the phenomenon; it is a measure of 

robustness that is itself robust.  Such an approach, we want to suggest, offers a more objective 

measure of game-theoretic robustness across changes in payoff matrix and a reliable indicator of 

the relative robustness of comparative phenomena.   

 

III.  The Cube Universe of 2 x 2 Game Theory 

 

 The overwhelming bulk of work in game theory to date is work in two-person game 

theory.  Two players are pitted against each other, almost always with just two options of play.  

What each player gains is dictated by the choices of both players, the results expressed in a 2 x 2 

matrix. 

 Although analytic work in game theory is often more general, the overwhelming bulk of 

work in applied game theory—game theory applied in simulation to questions of generosity and 

altruism, for example—has concentrated on one game in particular: the Prisoner’s Dilemma.  

Each player has the option of cooperating or defecting, with payoffs ranked DC > CC > DD > 

CD.  Defection against cooperation (DC) carries a greater payoff for the defector than mutual 

cooperation (CC), which carries a greater payoff than mutual defection (DD), which carries a 

greater payoff than cooperating but being defected against (CD).  By definition the Prisoner’s 

Dilemma carries a further condition as well; that it not be possible to exceed an average gain of 

mutual cooperation by alternating defections and cooperations on each side (CC > [DC + CD] / 

2).
2
  

 Over the past 25 years, moreover, the vast majority of game-theoretic simulations 

regarding cooperation, altruism, and generosity (including our own) have used one particular set 

of values for the Prisoner’s Dilemma, or something close, chosen from the wide universe of 2 x 2 
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game theory (Axelrod 1980a, 1984, Axelrod and Hamilton 1981, Nowak and Sigmund 1993, 

Sigmund 1993, Grim 1995, 1996, Wedekind and Milinski 1996, Nakamaru, Matsuda, and Iwasa 

1997, Brauchli, Killingback, and Doebeli 1999, Harms 2001, Grim et. al. 2004, 2005).  The 

standard matrix used for the Prisoner’s Dilemma is shown below.   

 

Player B 

 

Cooperate             Defect 

 

 

                     Cooperate 

Player A 

 

       3 , 3 

 

       0 , 5 

        

                           Defect 

 

       5 , 0 

 

       1 , 1 

 

Axelrod notes that the two person Prisoner’s Dilemma has become “the E. coli of social 

psychology” (Axelrod 1984, 28).  It is clear that this particular payoff matrix is the standard 

laboratory strain.   

 We can find no body of theory that justifies the primary role that these particular values 

have played.  The notion seems widespread, moreover, that results established using just these 

particular values can be taken as results for the Prisoner’s Dilemma in general; only a few pieces 

of work have explicitly highlighted variance of applicational results across different matrices 

which fit the requirements of the Prisoner’s Dilemma (Nowak & May 1993; Lindgren & Nordahl 

1994; Braynen 2004).   

 Only slightly more justification has been given for obsessive concentration on the 

Prisoner’s Dilemma.
3
  William Poundstone writes that “The prisoner’s dilemma is apt to turn up 

anywhere a conflict of interests exists” (Poundstone 1992, 9).  Axelrod writes that  

 

The Prisoner’s Dilemma is simply an abstract formulation for some very common and 

very interesting situations in which what is best for each person individually leads to 

mutual defection, whereas everyone would have been better off with mutual cooperation.  

(Axelrod 1984, 9) 

 

Brian Skyrms, on the other hand, has recently argued that exclusive concentration on the 

Prisoner’s Dilemma is a mistake.  Skyrms argues that Stag Hunt should be a focal point for 

social contract theory, particularly with an eye to game dynamics.  Many situations that may 

appear to be Prisoner’s Dilemmas, he argues, are rather Stag Hunts in disguise (Skyrms 2001, 

2004; see also Bergstrom 2002).   

 The universe of 2 x 2 game theory extends far beyond the particular values of the 

standard matrix in Figure 1, of course, and far beyond the inequalities definitional of the 

prisoner’s Dilemma.  For different inequalities between our values CC, CD, DC, and DD, we get 

different games: 

 

 DC > DD > CC > CD          Deadlock  
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 DC > CC > CD > DD          Chicken 

 CC > DC > DD > CD          Stag Hunt 

The full universe of 2 x 2 game theory extends beyond these named games as well, including all 

sets of four possible values for CC, DC, CD, and DD.   

 The robustness measure we propose consists of a map of this larger universe of game 

theory, including a full range for values CC, DC, CD, and DD.  In such a map, the fact that a 

particular game-theoretic effect holds at a particular set of matrix values can be represented by 

plotting a particular point in the universe of game theory.  One can thus imagine clouds of points 

representing the various matrices at which a particular game-theoretic effect appears.  An effect 

that is robust across changes in matrix values will occupy a large volume of the game-theoretic 

universe.  A ‘fragile’ result, on the other hand, will be restricted to particular points or to a small 

area.  Such a map would give us important comparative results as well.  One result or effect A 

could clearly be said to be more robust than another result B if the volume of matrix values for 

which B holds is included as a sub-volume within the more extensive volume of effect A.  

 What we are proposing is a map of the entire abstract area of 2 x 2 game theory.  In some 

cases, for some questions, nature may dictate a special importance for some sub-region of that 

space.  In that case the techniques we outline could be tailored to that particular issue.  Here, 

however, we concentrate on the general case of the entire abstract space.   

 How are we to envisage the universe of 2 x 2 game theory?  Because our matrices are 

written in terms of four basic parameters—CD, CC, DD, and DC—the first inclination is to 

envisage such a universe as a hyperspace in 4 dimensions.  That thought is intimidating, 

however, simply because of the difficulties of envisaging and conceptually manipulating results 

in four-dimensional space.  We routinely exploit the fact that we are evolved from fruit-seeking 

primates by building on the perceptual abilities that come with that evolutionary history.  

Visualization in two or three dimensions is of great conceptual benefit, allowing us to tackle 

formal relations by exploiting immediate perceptual inferences (Larkin & Simon 1987; Grim 

2005).  But the sad fact is that our spatial abilities are limited to three dimensions.  Many of the 

benefits of visualization are lost if we try to work in four. 

 What we propose instead is a manageable three-dimensional image of the universe of 

game theory.  The key is that 2 x 2 games are defined in relative rather than absolute terms.  

What qualifies a game as a form of Deadlock, for example, is that DC > DD > CC > CD.  Game 

theory is determined by relative values in a deeper sense as well: the dynamics of a game with 

values DC > DD > CC > CD of 20 > 10 > 6 > 4 will be identical to a game with values 10 > 5 > 

3 > 2.  What gives a game its character is not the absolute but the relative values of these 

variables.   

 We therefore lose nothing in mapping the universe of game theory if we envisage it in 

terms of three of our dimensions relative to a fourth.  We can, for example, set CC at a constant 

value of 50 across our comparisons.  Values for our variables CD, DC, and DD can be envisaged 

as values relative to that CC, extending for convenience from 0 to 100.  (A complete picture of 

the universe would extend these values indefinitely in one direction.)   Within such a framework, 

for example, a set of  values  DC > DD > CC > CD  of 5  > 3 > 1 > 0 can be ‘normalized’ to a 

CC of 50, giving us 83 1/3 > 50 > 16 2/3 > 0, or approximately 83 > 50 > 17 > 0.
4
     

 Within this universe of game theory, Figure 1 shows the single most studied point: the 

Prisoner’s Dilemma with the standard values of  5 > 3 > 1 > 0.  Of course, the range of the 

Prisoner’s Dilemma is much larger than that point.  Figure 2 shows the full range of the 
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Prisoner’s Dilemma, strictly defined with the constraint that CC > [DC + CD] / 2.  Figure 3 

shows the larger area for a Prisoner’s Dilemma in which the additional definitional constraint is 

dropped.  Fully rotating versions of these and later illustrations can be found at 

www.ptft.org/robustness. 

    
Figure 1.  The single most studied point in game theory: The Prisoner’s Dilemma with  

DC > CC > DD > CD values 5 > 3 > 1 > 0 

 

 

     
Figure 2.  The Prisoner’s Dilemma with CC > [DC + CD] / 2 

 

 

 

   
Figure 3.  The Prisoner’s Dilemma without the standard constraint   

  



 7 

The volumes corresponding to Stag Hunt, Chicken, and Deadlock are shown in Figures 4, 5, 

and 6.  In none of Figures 1 through 6 do values go beyond the CD = 50 plane, because we have 

normalized our cube to CC = 50 and because CD > CC for none of the games defined. 

    
Figure 4. Stag Hunt 

 

 

    
Figure 5. Chicken 

 

 

 
Figure 6. Deadlock 

 

As we have noted, these standard games do not by any means exhaust the universe of 

game theory.  There are 4 factorial or 24 possible inequalities governing our variables CC, CD, 

DC, and DD, all of which are represented in the universe of game theory but only 4 of which 
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constitute the games above.  The reasons that other games have been ignored are largely 

interpretational rather than formal.  Many have seen cooperation and competition as forming an 

essential tension in social life.  Attention has therefore been concentrated on games in which 

individual benefit from mutual cooperation conflicts with individual benefit from competition—

in which a player’s gain from mutual cooperation is greater than from his one-sided cooperation, 

for example, but in which defection against a cooperator is preferable to mutual defection.  

Those interests emphasize games in which CC ranks higher than CD and DC higher than DD, 

and only 6 of the possible orderings satisfy both conditions.  Two of those are games in which 

defection always gets a lower payoff than cooperation, regardless of what the opponent does.  If 

we eliminate those two, we are down to the standard four: the Prisoner’s Dilemma without the 

additional constraint, Stag Hunt, Chicken, and Deadlock (Poundstone 1992).  It should be 

emphasized, however, that what has led us to focus on these games in particular is not merely 

their formal structure but the informal meanings we give to ‘C’ and ‘D’ and our background 

assumptions about the social and economic life we choose to model. 

 A significant volume of the game-theoretic cube, comparable to that occupied by these 

standard games, is occupied by their ‘shadows’.  Our games are defined in terms of relationships 

CC, CD, DC, and DD, themselves defined in terms of C and D as options.  But what of two 

games that are symmetrical in the way that the following matrices reflect? 

 

Player B 

 

Cooperate             Defect 

 

 

                     Cooperate 

Player A 

 

       3 , 3 

 

       0 , 5 

        

                           Defect 

 

       5 , 0 

 

       1 , 1 

 

 

Player B 

 

Cooperate             Defect 

 

 

                     Cooperate 

Player A 

 

       1 , 1 

 

       5 , 0 

        

                           Defect 

 

       0 , 5 

 

       3 , 3 

 

 

These two games are different only in that the option called ‘defect’ in the first game is labeled 

‘cooperate’ in the second.  Gains for CC, CD, DC, and DD in the first game are identical to gains 
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in the second game for DD, DC, CD, and CC; all that has changed is that ‘C’ appears in place 

of ‘D’ and ‘D’ in place of ‘C’.  What these matrices represent are thus the Prisoner’s Dilemma 

with the standard values and its ‘shadow’.
5
 

 Although it is not of crucial importance for present purposes, the location of shadow 

games in the game-theoretic universe is intriguing.  If we pile up the game-theoretical volumes  

for Deadlock, for Chicken, for Stag Hunt, and for the Prisoner’s Dilemma without the CC > CD 

+ DC / 2 condition, the mereological whole forms a tight complex on one side of the universe 

(Figure 7).  Here Chicken is a prism lying on the CD-DC floor, Prisoner’s Dilemma lies over it, 

Deadlock sits above the two of them and Stag Hunt is a truncated shape to the right. 

 

 
Figure 7.  The total game complex   

Rotating versions of all illustrations can be found at www.ptft.org/robustness. 

 

 
Figure 8.  The total shadow complex 
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 The ‘shadow’ of all of these games as a complex lies on the other side of the universe  

(Figure 8).  One way to describe the relative positions of the game complex and its shadow is in 

terms of new axis labels.  The corner farthest from our origin, diametrically opposite across the 

cube, we might label the ‘counter-origin’.  The edge furthest from the DC axis, again 

diametrically opposite across the cube, we take as our DC’ axis.  We also envisage the DC’ axis 

as running in the opposite direction, starting from 0 at the counter-origin.  CD’ and DD’ are 

similarly the edges furthest from our CD and DD axes, which we envisage as running from 0 at 

the counter-origin.  The relationship between our game complex and its shadow can now be 

expressed as follows: the shadow complex lies in relation to the counter-origin and axes CD’, 

DC’, and DD’ precisely as the game complex itself lies in relation to the origin and CD, DC, and 

DD. 

 Appropriate rotation of an object in four-dimensional space produces a three-dimensional 

mirror image of the original (Mbius 1827 (1976); Rucker 1984).  The shadow of our game 

complex is such a four-dimensional rotation, though also rotated 180Ε in three dimensions.  One 

could also describe the relative positions of the game complex and its shadow entirely in terms of 

mirror images.  If we take that area corresponding to the game of Deadlock, and take its mirror 

image across the CD = 50 plane, then take the mirror image of that result across the DC = 50 

plane, and finally take the mirror image of that across the DD = 50 plane, we have the position of 

the Deadlock shadow.  The same series of mirror images take us from the game complex as a 

whole to its shadow as a whole. 

 What we have tried to describe is the relationship between the game complex as a whole 

and its shadow as a whole.  The same relationship holds for some but not all of its parts and their 

shadows.  The shadow for the Prisoner’s Dilemma without the CC > (CD + DC) / 2 constraint is 

its 3-way mirror image, as above, as is the shadow for Deadlock (Figures 9, 10).  But this does 

not hold for Stag Hunt and Chicken.  In these cases there is a surprising reversal between game 

and shadow.  The shadow for Stag Hunt is the 3-way mirror image not of Stag Hunt but of 

Chicken (Figure 11).  The shadow for Chicken is the 3-way mirror image not of Chicken but of 

Stag Hunt (Figure 12).  Thus, although the game complex and its shadow as a whole stand in the 

spatial relation outlined, which game occupies which sub-space of that complex changes as we 

move from the complex to its shadow.  Symmetry is also broken between the Prisoner’s 

Dilemma and its shadow when we include the standard constraint and its appropriate shadow 

(Figure 13). 
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Figure 9.  The Prisoner’s Dilemma without standard constraint, with shadow 

                
Figure 10.  Deadlock, with shadow 

 

 

    
Figure 11.  Stag Hunt, with shadow 
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Figure 12.  Chicken, with shadow



 
Figure 13.  The Prisoner’s Dilemma with CC > [CD + DC] / 2 constraint, shadow with 

symmetrical DD > (CD +DC)/2 constraint 

 

 Here and throughout, we deal with a game-theoretic cube in which CC is normalized to 

50 and other values are sampled in a range between 0 and 100.  Even with CC normalized at 50, 

of course, the universe of game theory as a whole extends infinitely in the direction of axes CD, 

DC and DD.  Though they capture an important area, therefore, the illustrations above still 

constitute only a ‘chunk’ of the whole.  As a reminder of this fact, we also offer an illustration 

with CC normalized at 50 but other values allowed to range between 0 and 200 rather than 

between 0 and 100 (Figure 14).  Although the strict Prisoner’s Dilemma and Stag Hunt are fully 

contained in our original cube, it is clear that the volume corresponding to Deadlock, to Chicken, 

and to the Prisoner’s Dilemma without the standard constraint continue beyond it.   

 
Figure 14.  A view of the extended cube for DC and DD values greater than twice CC   
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IV.  The Robustness of TFT 

 

 What we have proposed is a graphical map of the universe of 2 x 2 game theory.  One 

thing such a map offers is a measure of robustness across changes in game-theoretic matrices.  

For a survey of matrix points, we can establish whether a particular game-theoretic result holds 

at those matrices.  Effects which are more robust with respect to matrix changes—that hold for a 

wider range of matrix values—can generally be expected to be visible across a relatively larger 

volume of the game-theoretic cube.  Comparatively less robust or more fragile effects will be 

confined to a smaller visible area.
6
   

 With such a measure, we will also be able to offer a direct image of ‘inclusive 

robustness’.  A phenomenon X may hold at all matrix values at which Y holds, though 

phenomenon Y does not appear in all cases X does.  Set-theoretic relationships of game-theoretic 

sub-phenomena, super-phenomena, union and intersection phenomena should be immediately 

obvious from their display in the cube.  In this section and the next we offer two examples of the 

application of the matrix robustness measure.   

 TFT, we have noted, has a reputation as a robust effect across different forms of 

competition: Axelrod’s round-robin tournaments (Axelrod 1980a, 1980b), Axelrod and 

Hamilton’s replicator dynamics tournaments (Axelrod & Hamilton 1981), and in a spatialized 

competition of simple strategies (Grim 1995, 1996).  Concentrating on spatialized conquest by 

TFT in particular, our question will be how robust the spatialized TFT effect is across changes in 

matrix values.  

 We use as our basis just the 8 reactive strategies in an iterated Prisoner’s Dilemma: those 

strategies whose behavior on a given round is determined entirely by the behavior of the 

opponent on the previous round.  Using 1 for cooperation and 0 for defection, we can code these 

8 basic strategies as 3-tuples <i, c, d>, where i indicates a strategy’s initial play, c its response to 

cooperation on the other side, and d its response to defection: 

 

   <0,0,0>  All-Defect 

   <0,0,1>  Suspicious Perverse 

   <0,1,0>  Suspicious Tit for Tat 

   <0,1,1>  D-then-All-Cooperate 

   <1,0,0>  C-then-All-Defect 

   <1,0,1>  Perverse 

   <1,1,0>  Tit for Tat 

   <1,1,1>  All-Cooperate 

 

We begin with a randomization of these strategies across a 64x64 cellular automata array.  Each 

cell plays 200 rounds of an iterated Prisoner’s Dilemma with its 8 immediate neighbors, then 

totals its score.  If at the end of 200 rounds a cell has a neighbor that has amassed a higher total 

score, it converts to the strategy of that neighbor.  If not, it retains its strategy.  Updating is 

synchronous.  In the case of a tie between highest-scoring neighbors, one is chosen at random 

(Grim, Mar, & St. Denis 1998). 

 Using the standard DC > CC > DD > CD values of 5 > 3 > 1 > 0 for the Prisoner’s 

Dilemma, it is well known that dominance first goes to a pair of exploitative strategies: All-

Defect (All-D) and C-then-All-Defect (C-then-All-D).  Once a range of vulnerable strategies has 
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been eliminated, however, clusters of TFT start to grow against the background of All-D and 

C-then-All-D.  Tit for Tat eventually conquers the entire array (Figure 15).  A full evolution of 

this and later arrays can be seen at www.ptft.org/robustness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  Conquest by TFT in a randomized environment of 8 reactive strategies  

 

What this shows is spatialized conquest by TFT for the specific DC > CC > DD > CD values of 

5 > 3 > 1 > 0.  But how robust is that effect across changes in matrix values?   

 In order to answer that question, we took results across 8,000 spatialized competitions, 

using values for CC, CD, and DC between 0 and 20 and with CC normalized at a value of 10.  In 

each case we began with a randomization of the 8 reactive strategies across a 64 x 64 array, 
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precisely as above.  Those matrix values at which TFT showed a greater than 90% occupation 

of the array after 100 generations were counted as positive for the TFT effect.  Those that 

showed a lower role for TFT were counted as negative. 

 When plotted, these points give us a clear indication of the robustness of the spatialized 

TFT effect across changes in matrix values (Figure 16).  Results are shown from three chosen 

angles.  A fully rotating image of the result can be found at www.ptft.org/paq/robustness.  

 

 
Figure 16.  The spatialized TFT effect         

  

Comparison with the extent of the Prisoner’s Dilemma shown in Figures 2 and 3 indicates that 

the spatialized TFT effect appears through most of the area of the Prisoner’s Dilemma, even 

when the extent of the game is broadened by dropping the CC > (CD + DC) / 2 condition.  The 

TFT effect also appears beyond that area.  In Figure 17, we graph only those matrix values for 

which the TFT effect appears that are not Prisoner’s Dilemma values in even the broad sense.  It 

can be seen that the effect spreads into a great proportion of Chicken (gray), a few values within 

Stag Hunt (light gray), and a cluster of values that fall under none of the standard games (shown 

in black).  Conquest by TFT in a spatialized environment turns out to be an importantly robust 

effect across matrix values.  In the next section we use this measure to compare the matrix 

robustness of this game-theoretic effect with another. 

 

 
 

Figure 17.  The extent of the spatialized TFT effect beyond the Prisoner’s Dilemma           
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V.  The Robustness of the Contact Hypothesis 
 

 In this section, we offer another effect for comparison: a game-theoretic instantiation of 

the contact hypothesis (as developed in Grim, Selinger, Braynen, Rosenberger, Au, Louie, & 

Connolly 2004; Grim, Selinger, Braynen, Rosenberger, Au, Louie, & Connolly 2005). 

 There are many theories regarding the nature and sources of prejudice in the social 

psychological literature, but only one major theory about how to reduce prejudice—the contact 

hypothesis.   The contact hypothesis posits that under the right conditions, prejudice between 

groups will be reduced as those groups are integrated (Allport 1954; Pettigrew 1998; Zirkel & 

Cantor 2004).  It has a range of empirical support and has played an important role in public 

policy starting with Brown v. Board of Education.  A computational model for such a hypothesis, 

we suggest, would need to include at least the following features:  (i) distinct groups, (ii) 

behaviors which may or may not be differentiated by actor and recipient groups, (iii) advantages 

and disadvantages resulting from these behaviors, (iv) an updating mechanism for behavior, and 

(v) configurations of greater and lesser contact between the different groups. 

 We have used game-theoretic resources to construct a model of this type: our model 

features cellular automata that play a spatialized version of the iterated Prisoner’s Dilemma.  

Cells play only with their eight contiguous neighbors, and after 200 rounds of interaction, they 

adopt the strategy of their most successful neighbor.  Although we appropriate the standard 

payoff matrix and the standard eight reactive strategies, our model is novel in two respects: (1) 

Each cell is defined not only by strategy, but also by color; each cell is either red or green, and a 

cell’s color never changes during play.  (2) One color-sensitive strategy, named Prejudicial Tit 

for Tat (PTFT), is added to the mix; it plays All Defect against cells of the other color and TFT 

against cells of its own color.      

 By varying how the cells are distributed—playing some games in an array that is 

segregated by color and other games in an array is integrated by color (Figure 18)—we are able 

to assess the success of PTFT in different environments.  The contact hypothesis is tested by 

contrasting success the prejudicial strategy PTFT in the segregated environment with its success 

in the integrated one.   

 

          
 

        Figure 18.  Segregated (left) and mixed patterns of background color 
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We find that in the segregated array, PTFT and TFT are the only two strategies that remain 

after approximately 12 generations; each takes up roughly half the area (Figures 19, 20).  In the 

mixed array, on the other hand, TFT eventually takes-over almost the entire space, leaving only 

very small clusters of the color-sensitive PTFT (Figures 21, 22).  We claim that these results 

provide strong computational support for the contact hypothesis, and that social psychologists 

should pay closer attention to spatialized game-theoretic elements of advantage and 

disadvantage; these may indeed play a crucial role in the mechanism that facilitates prejudice 

reduction in contact situations. 

 

   
    

  Figure 19.  Evolution of randomized strategies to shared dominance by TFT and PTFT in 

an array segregated by color.    A complete evolution can be seen at www.ptft.org/robustness. 
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Figure 20.  Percentages of the population for 9 strategies in an array segregated by color  

(20 generations shown) 

 

 
 

Figure 21.  Evolution of randomized strategies to dominance by TFT in an integrated 

(randomized) color array  



 
Figure 22.  Percentages of the population for 9 strategies in an array randomized by color  

(20 generations shown) 

 

 What is at issue here, however, is how robust the PTFT effect is across changes in matrix 

values.  How does it compare, in particular, with the spatialized take-over of TFT in the previous 

studies?   

 To investigate which matrices in the game-theoretic universe are ones where the contact 

effect occurs, we plot each point where both TFT takes over more than 90% of the space in a 

mixed array, and TFT and PTFT each take over more than 40% of the space in a segregated 

array.  Figure 23 shows a graphic portrayal of the matrix robustness of the contact effect in these 

terms.   

 

 
 

Figure 23.  The PTFT effect 
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 With two effects in hand, our measure allows a graphic comparison in terms of matrix 

robustness.  Here as in the TFT effect, comparison with Figures 2 and 3 indicates that the PTFT 

effect is evident throughout the area of the Prisoner’s Dilemma.  It is, in fact, evident throughout 

the larger area of the Prisoner’s Dilemma without the CC > [CD + DC] / 2 constraint.  We can 

also compare the extent of the PTFT effect in Figure 24, however, with the extent of the 

spatialized TFT effect in Figure 16.  That comparison vindicates the matrix robustness of the 

PTFT effect.  TFT, we’ve noted, is well known as a generally robust strategy.  With regard to the 

specific measure of robustness across changes in matrix values, at least, the PTFT effect outlined 

here is at least almost as robust as the spatialized TFT effect. 

 The PTFT effect, like the TFT effect before it, extends beyond the limits of both the 

Prisoner’s Dilemma proper and the larger area of the Prisoner’s Dilemma without the standard 

constraint.  In Figure 24, like in Figure 17, we eliminate that central area of the effect, showing 

the extent to which it similarly occupies a large area of Chicken (gray), a few matrices of Stag 

Hunt (light gray), and a cluster of values beyond any of the standard games (black).   

 

 
Figure 24.  The extent of the PTFT effect beyond the Prisoner’s Dilemma 

 

VI.  Conclusion 

 

 Our attempt here has been to outline and illustrate a new measure for game-theoretic 

robustness across changes in matrix values.   

Some such measure, we think, is long overdue.  Much of game theory has concentrated 

not only on the particular game of the Prisoner’s Dilemma but on a specific set of matrix values 

for that game.  Applications within theoretical biology, economics, and social and political 

philosophy quite often assume that the inequalities characteristic of the Prisoner’s Dilemma can 

be taken as characteristic of biological, economic, or social life generally.  It is common to move 

swiftly from that assumption to the specific values 5 > 3 > 1 > 0 with no argument at all.  The 

widespread focus on this set of values has misled some into thinking that results established for 

that single matrix can automatically be taken as results regarding the Prisoner’s Dilemma in 

general (for correctives see Nowak & May 1993; Lindgren & Nordahl 1994; Braynen 2004).   

Relying upon any single set of matrix values can lead one to mistake a fragile and limited 

effect for a broad and robust one.  It can also cause one to miss stronger effects in a wider 

neighborhood of values that do not happen to include one’s chosen matrix point.  A corrective 

for these dangers would be to accompany new results quite routinely with a measure of their 

robustness across matrix values. 
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We suggest that the game-theoretic cube instantiates effectively a measure of this sort.  

By selecting one normalized value, we provide the viewer with an opportunity to exploit what 

Herbert Simon called ‘perceptual inferences’ (Larkin & Simon 1987): matrix robustness can be 

envisaged in a rotating three dimensional display.  In standardizing the measure across different 

models, the game-theoretic cube permits a direct comparison of the matrix robustness of 

different effects.  This allows us to see at a glance that the areas of two effects are disjoint, 

intersect, or the area of one is a subset of the other.  

There is also much to be learned from the comparison of different robustness measures.  

As outlined above, Axelrod and Hammond measure the robustness of their model by seeing 

whether the effects still occur when parameter values are doubled and halved (Axelrod & 

Hammond 2003).  Gilbert and Troitzsch suggest another method: randomly sampling parameter 

values in order to chart variations in an effect.  “Plotting the values of the outputs generated from 

many runs of the simulation will give an indication of the functional form of the relationship 

between the parameters and the outputs and will indicate whether small parameter changes give 

rise to large output variations” (Gilbert & Troitzsch 2002, 23).  Axelrod and Hammond’s 

technique has the advantage of economy: a relatively small number of additional runs are 

required.  Unfortunately, theirs is also a fragile measure for robustness: since halving and 

doubling are relative to the initial values chosen, that initial choice may determine whether an 

effect is portrayed as robust or not.  A similar problem will appear for any measure that relies on 

an algebraic variation on initial values.  The Axelrod-Hammond test will also give false 

robustness positives, of course, for cases in which an effect holds at initial values, at half values, 

and at double values, but fails in the spaces in between.  Gilbert and Troitzsch’s technique avoids 

this latter difficulty, but becomes progressively less economical as a larger number of 

randomized values are tested.  It remains fragile with regard to the ranges in which the 

randomized values are to be chosen.  

The matrix robustness measure offered here, in contrast, is itself robust.  Because it 

represents a sampling across all possible values, it avoids fragility in terms of either initial values 

or chosen ranges of random sampling.  It must also be admitted, however, that it is a relatively 

expensive measure.  As long as the effects at issue are those that appear in short runs, a survey 

across matrix values seems well worth the minimal cost.  Where effects become complex, on the 

other hand, requiring runs that extend to weeks and months, a measure this comprehensive may 

become prohibitive.   

It becomes clear in the very first steps of trying to analyze the concept that ‘robustness’ 

comes in many forms, senses, or types.  The measure we have outlined is explicitly limited to 

robustness across variations in matrix values.
7
  Even within spatialized game theory, it would be 

desirable to have a gauge of robustness across the structure of the spatialization, across updating 

mechanisms, and across changes in strategy sets as well.   

A single measure adequate for all types of robustness is clearly too much to hope for.  

What we would like to see is the development of a number of standardized measures, adequate 

for different forms of robustness.  In some cases it may be possible to apply the general strategy 

we have used here, with a measure that is itself robust because it represents or encapsulates all 

possible variations.  In other cases it may not be possible.  Robustness, in all its senses, is a 

criterion of major importance across modeling quite generally—an importance that underlines 

the necessity of developing clear measures. 
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Notes 

 

1. D’Arms, Batterman, and G∴rny 1998 discuss both representativeness and robustness as 

virtues of game-theoretic models, but do not note this important link between the two.  They 

rightly note that there are importantly different kinds of robustness, and that “most authors who 

invoke robustness as an explanatory virtue are not very clear about what exactly makes the 

allegedly robust feature robust” (90).     

 2.  This second condition, interestingly enough, legislates against an alternating strategy that 

shows up commonly in both experimental game theory and in everyday life, studied formally 

and with simulations in Vanderschraaf and Skyrms 2003. 

3.  “Game theorists often devote rather less attention to demonstrating that their games 

accurately model actual human interactions than one could wish…For better or worse, the 

prisoner’s dilemma has been widely accepted among philosophers as teaching us something 

important about ordinary conduct” (D’Arms, Batterman, and G∴rny 1998, 89). 

4.  After developing the 3-dimensional model detailed here we discovered a 2-dimensional 

anticipation in Lindgren and Nordahl 1994 which also uses the trick of normalization.  Their Fig. 

10 is an attempt at an image across matrix values, though it captures only that part of the 

universe in which CC > CD and though their application is focused on the search for distinct 

cellular automata rules.     

5.  We are obliged to Paul St. Denis for calling ‘shadows’ to our attention and for insisting on 

their importance in the cube as a whole. 

6.  Relative measures of robustness in the cube, where one effect includes another, are fairly safe.  

Care should be taken in comparison of absolute volumes in different areas, however.  In the full 

four-dimensional universe, the volume occupied by Stag Hunt and its shadow, for example, will 

be the same.  In normalizing to a single CC value, as indicated above, this is not guaranteed to be 

the case.  Normalization to values other than CC can also be expected to change the image of the 

game-theoretic universe considerably.   

7.  The Axelrod-Hammond and Gilbert-Troitzsch tests are somewhat more generalizable, 

because for example they call for halving and doubling or randomly sampling across various 

parameters.  Many aspects of robustness, however—many dimensions of variation—extend 

beyond mere parameter values. 
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