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Abstract

A small consortium of philosophers has begun work tbe
implications of epistemic networks (Zollman 2008 dan
forthcoming; Grim 2006, 2007; Weisberg and Muldoon
forthcoming), building on theoretical work in ecaonigs,
computer science, and engineering (Bala and Gog#8,.1
Kleinberg 2001; Amaral et. al., 2004) and on soxgeemental
work in social psychology (Mason, Jones, and Golukst 2008).
This paper outlines core philosophical results artknds those
results to the specific question of thresholds. istemic
maximization of certain types does show clear thoks effects.
Intriguingly, however, those effects appear to bepartantly
independent from more familiar threshold effectaétworks.

1. Epistemology and Scientific Networks

Epistemology is defined as the study of knowled@ée
traditional focus in the field, however, has longeh
limited to the study of the individual epistemiceag
Traditional epistemology treats knowledge acquisitas
an individual endeavor. In Hume, Descartes, andtKa
epistemology is told as the story of a single indiral
trying to figure out what the world is like—an attpt to
answer the question of how an individual agentréguwut
the structure of the world.

A small consortium of contemporary philosophers has
begun work on a different approach (Zollman 2008 an
forthcoming; Grim 2006, 2007; Weisberg and Muldoon
forthcoming). In this recent work the essentiapbasis is
not on communities of epistemic agents rather thamhe
individual.

How does an individual figure out the structuretiod
world? The truth is that no individual does. dtcultures
and communities that plumb the structure of reality
individuals figure out the structure of the worldlyp as
they participate in the epistemic networks in whtbley
are embedded.

Science is undoubtedly our pre-eminent example of
knowledge acquisition. But what characterizes
contemporary scientific research is not a catafdgadated
investigators but coordinated interactiveetworks of
investigation. To understand knowledge acquisition
science one must understand more than the work of

individual participants. One must understand thecsure
and dynamics of the enterprise as whole.

Here questions are importantly different than éhas
traditional epistemology. A scientific communitarc be
envisaged as a network of interactive agents atiampo
limn reality on the basis of uneven, conflictingnda
sometimes ambiguous data. How does the network
structure of collaboration and competition, of dslaring
and information transfer, affect knowledge acqigaitin
the community at large? What kinds of network ctnees,
of what kinds of agents, will best achieve sciéntjoals—
scientific goals of accuracy, for example? In whatys
will those structures be sensitive to the speddicn of the
problem, or to the distribution or uncertainty oétal?
Those are questions central to this new approant, a
questions for which the work outlined below offaeme
early and partial clues.

Given what we know of networks in general, it isb®
expected that the dynamics of information acquisitand
exchange across an epistemic network will not degcible
to any simple aggregate measure across individu@he
modeling results offered here substantiate thaeetgpion
in full. One of the implications of epistemic netks,
tracked here in terms of thresholds, is the rokarst
surprising finding that a scientific community mégarn
more when its individual scientists leatass In terms of
central scientific goals such as accuracy, incikase
informational linkages between scientists may Hotags
be a good thing.

17" century science was characterized by distributed
informational networks with limited linkages betwee
investigators. 271 century science is characterized by
totally connected networks across the internete ®@ay of
phrasing a central result in what follows is thaet $ome
central scientific goals, including accuracy, and $ome
topics of investigation, the network structure of"1
century science appears tosuperiorto our own.

Section 2 outlines the notion of epistemic landscap
crucial to the model, with details in section 3 inttial
networks surveyed. The core result that a scientif
community can learn more when individual scientistgn
less is presented in section 4. Sections 5 andrt@efr
explore the question of precisely what properti€fs o



networks are important for that result. Here rissshow
clear thresholds for epistemic maximization of amrt
types with increasing number of links in randomwaks.

Epistemic maximization on networks of the type at
issue, it turns out, exhibits clear threshold plmeana. But
it also turns out that the epistemic threshold&ssiie are
surprisingly independent from other network; they ribt
correlate cleanly with thresholds in any of the esth
network properties one might expect.

Results here are intended as an introduction, firish
hints regarding some of the surprises and sulsletie
informational dynamics across epistemic networksese
are offered as a first word on the topic, rathantthe last
word; it quickly becomes clear how much we do net y
understand, and how much more work remains to be.do

2. Epistemic Landscapes

We can envisage an epistemic landscape as btpypof
ideal data—data regarding alternative medical tneats,
for example (Fig. 1). In such a graph points i X plane
represent particular combinations of radiation and
chemotherapy, or particular hypotheses regardiegbtst
combination. Graph height on the y axis repressatae
measure of success: the proportion of patientadhdured
with combinations of radiation and chemotherapythait
rate. If you use radiation therapy at rate x, and
chemotherapy at rate z, you will get the proportibeures
represented on the y axis hovering over that point.

observed
success of
treatment

Fig. 1 A three-dimensional epistemic landscapeint® on the xz
plane represent hypotheses regarding optimal catibmof
radiation and chemotherapy; graph height on thdés/rapresents

some measure of success.

This first epistemic landscape is a medical ong,tbe
specific topic of investigation is unimportant faur
broader epistemic concerns. One might have arnespis
landscape of magnetology readings for different
hypothetical locations of a shipwreck, or of irdidi

stratigraphy world-wide as feedback regarding déffe
hypotheses regarding the timing of the K-T asteroid
collision, or any measurable variable y that canfirsome
hypotheses rathethan others regarding the interplay of
variables x and z.

It is important to emphasize, however, that the concept
of an epistemic landscape represedesal data across a
full range of possible hypotheses. Different irtigegors
will test different hypotheses and will get diffatel
feedback regarding those hypotheses. As an indaid
investigator, however, one will not be able to ghe
epistemic landscape as a whole. One will seetsesuly
at a point in the graph, in a small area or inattecng of
points.

Despite those limitations, our job description as
epistemic agents is to find the theory that is lsegiported
by data. The goal of investigation is to find thighest
points in the epistemic landscape—the best confirme
hypotheses, or the most warranted predictions, ntiost
reliable medical treatments. Fortunately, we dbwork
alone: we are linked to other investigators as péra
larger network.

The model at issue here employs simpler two-
dimensional epistemic landscapes (Fig. 2).
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Fig. 2 Two-dimensional epistemic landscapes. &alon the x
axis represent alternative hypotheses. Values®wy tixis
represent the ideal epistemic payoff for partichijgpotheses.



In the first landscape data converges smoothly
single best hypothesis or medical treatment. Téwrsd
represents a slightly more complex landscape, in w
particular combinations of drugs do well, perhapst
combinations in between do worse. The third istilh
more complex landscape, in which some peaks aretsr
and easily climbed, but represent imberoutcomes. Th
hypotheses or medical treatments they lead to er¢he
best. The best outcome, howeveahat hypothesis th:
would be best confirmed, or that medical treatmibatt
would be most effectivedis hidden in a spike with
narrow base, and is thus harder to find.

3. Modeling EpistemicNetworks

Suppose we have a population of agents, each ofrv
starts with a hypothesis. Here that hypothesis
represented by a single point on the x-afisin epistemic
landscape. In testing their hyposes, our agen
accumulate data as feedbaca—percentage of patie
cures, for example But our agents are also networkec
others they can see not only the success rate of thveir
hypothesis but the success rate for the hypothefsémse
to whom they are linked.

Agents change their hypotheses based on the st
rates of those to whom they are linkefls an agent in thi
model, you can see how well the hypotheses of suthrer
agents are doing; if their hypotheses are bettppated
by thedata than yours, you shift your hypothesis in t
direction. If your hypothesis is the best of thessble to
you, on the other hand, you stick with it.

With even a networkmodel this simple there are
number of intriguing parametersOne of theparameters
built into this model is ashaking hand’: when you aim -
duplicate another’s hypothesis, you may be sliglattiy
Your lab conditions may be slightly differ from that of
the other agenior your chemicals impure, or your sam
slightly biased. You therefore end up with a hypoth
that isnot a precise match of that you are imitating Ist
merely close by. One result, of course, is that
therefore explore more of the epistemic landscapée
model used here builds in a ‘shaking tfatinat puts one in
random regionwithin 4 points either side of a targ
hypothesis.

The model also incorporatedements of ‘speed’ ar
‘inertia’. In pursuing a more successful hypotbesioes
one jump tahat conclusion or approximate it halfway ei
time? This model employs the latter assumptioith &
‘speed’ of 50%. It also builds in an ‘inertia’ tac of 50%,
representing agentstubborn investment itheir current
hypothesis. In each of 100eps each agent has only
50% probability of shifting in the direction of aerior
hypothesis.

The crucial parametethe model is designed
investigate, of cowe, is network structure (Fig. 3
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Fig. 3 Structres of epistemic networks used in the mot
Shown here with 20 nodes for visibility, networksed in the
model linked a population &0 nodes.

Working with 50 agents, we studied networks in \khilse
network structure is:

(1) a simple ring, with cdacts to a single agent on e:¢
side;

(2) a small world network, here a simple ring watl9%
probability of rewiring;

(3) a ring with double radius, in which each agkas
contacts with two agents on each ¢

(4) a wheel, also known as a ‘royal fan' in the
economics literature, in which each agent on thg glsa
has contact with a central agent;



(5) a hub, in which agents have contact only thhotingt
central agent;

(6) a random network, here with a 10% probabilify o
combination between any two nodes;

(7) A total, connected, or complete network, in ethall
nodes are linked to all others.

Though illustrated in terms of 20 agents in Figti&
model employed the network types above with 50 &gen
With the noted parameters for shaking hand, spaad,
inertia outlined above, each agent in the netwqrétated
on those two which it was linked through a serie4@0
steps. 100 runs were performed for each netwoth e
randomization of agent hypotheses and network tstreic
in the case of small world and random networks.

4. Network Effects in Epistemic Maximization

In which networks, exploring which epistemic
landscapes, will agents succeed in finding the nagti
hypothesis? Here our measure was whether any agent
the network found the optimal hypothesis; assuméng
process of convergence to the highest all in a ectedl
cluster would eventually follow suit.

For the simpler two epistemic landscapes in Fjgvith
smooth climbs to their peaks, all of the networks/eyed
found the highest point in all 100 cases. Thos&vorks
which systematically found it most quickly were $lowith
the highest connection and degree. In these stiidieas
the total or connected network which most quicldyrid
the peak.

Results were intriguingly different for the morengolex
network represented by the epistemic landscapegnd4r
in which the optimal hypothesis is hidden in a oarr
peak.

the epistemic landscape
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Fig. 4. The more complex epistemic landscape hithvthe
optimal hypothesis is hidden in a narrow peak.

In this case none of the networks surveyed foural th
optimal hypothesis in all 100 runs. The percergagt
successful runs, moreover, show a wide variancén wit
different network structure (Fig. 5).

For this epistemic landscape, a regular ring ofvodted
agents connected to a single neighbor on each witlea
'shaking hand' of 4 points and using speed andianer

factor of 50%, converges on the highest point iR66f
the runs.

For a 'small world' variation, with a 9% probalyilibf
rewired connections, the success rate drops imradylim
55%.

Connect each node not with a single neighbor o eac
side, as in the single ring, but with two neighbonseach
side and the success rate drops immediately to 40%.

Networks configured as wheels and hubs give a 42%
and 37% success rate in finding the optimal hymithe

Random networks with a 10% probability of connettio
between any two nodes give a success rate of 47%.

Worst of all, operating on this epistemic landscajiti
the background assumptions noted, are total oremad
networks. Here the chance of finding the epistemic
optimum is a mere 32%--approximately half the sesce

rate of a simple ring.
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Fig. 5 Percentages of 100 runs in which netwofldifferent
structures found the optimal hypothesis in the tepig
landscape of Fig. 4.



Scientific exploration has multiple desiderata. r the
central scientific goal of accuracyhere represented
finding the optimal hypothesis in an episie landscag—
it is clear that informationdinkages between investigatc
is thus not an unadulterated good. Given a tendém
follow the lead of a morsuccessful hypothesis, even v
an ‘inertia’ parameter of 50% and a 50% restrictmm
‘speed,’increased linkages between nodes can result
convergenceon a suboptimal hypothesis. The probl
with increased linkages is that there is converg to that
hypothesis that is ‘best in showthe best present
occupied by anyone in the network—wiich is not the
highest in the landscape or the best in fact. tEpiE
networks with increased linkages have a tendenclett
exploitation trump explotéon, resulting in quicl
convergence to a sutiptimal epistemic outcome

A scientific community may therefore lealess when
its individual scientists learn moremere, that is
regarding others’ immediate results. The scientific
networks of the 221 century massively connected throu
the internet, approach the character of a totalomnectec
graph. The scientific networks of the™ century were
significantly more distributed: investigators commuated
in large part on an individual basis andléfger, perhaps i
a structure as distributed as that of a ring neitv On the
agent updating assumptions used hexed in cases i
which the epistemic landscape has something of
character of Fig. 4, it is science on &"X&ntury networl
rather than a Zicentury network that could be expectec
prove more successful.

5. Increased Linkages in Random Networks
An Epistemic Thresholc

Precisely whaproperty is it of the networks above tl
facilitates epistemic success in such a ce

To thispoint we have been working with a small sarr
of assorted networks. The results are suggesbue
further exploration is needeWhat is required for a deep
understanding i®bserved variability in epistemic succt
with variation in a single networlparameter or sma
combination of parameters. In  pursuit of t
understanding, the results that follow leabehind the
wide variety of networks surveyed above, conceintge
instead on a single formThe goal within that focus is
track the effecton epistemic outcome of varying t
number of links between nodes.

A number of assumptions are retained from the et
above. We again use the epistemic landscape of4k
with networks of 50 agents, a ‘shaking hand’ of 4 pc
variability, and usig an updating ‘speed’ and ‘inertia’
50%. Here our networkswill be random network
throughout, howeverperhaps the most studied of
network structures. None of the networks usedetbee,
have the clear symmetry of a simple ring, and naifiebe

as connected as a total or complete network. Besah
therefore be expected to lie between the extrernesd
above. What this closer focus allows us is the possib
of systematically varyinghe single parameter of numt
of links between agents track implications foepistemic
network success on the given landsce

10 25

50 100

Fig. 6 Sample random networks with increasing nemsiof
links. Giant cluster shown in black in each cag# other links
in gray.

How does increasedonnectivity in random networ}
affect epistemic outcome? The results appear @n Fi
showing the result of increasing number of randonksl
between nodes from 5 to 30@Ghown for eac number of
links at intervals between 5 and 300 is the percentf
1000 runs in which random networks with that numbg
links succeeded in finding the highest point on
epistemic landscape.

60 7

50 7

40 1

30 1

20

10 ¢

Percentage of runs finding optimal hypothesis

5 30 55 80 105 130 155 180 205 230 255 280
Number of links in random network of 50 nodes



Fig. 7 Percentage of 1000 runs in which random netwof 50
nodes with the given number of linksicceeded in finding tf
optimal hypothesis in the epistemic landscape of &i

The results show a cleaepistemic threshold at
approximately 25 nodes. Although thisin line with the
results outlined above, it is nonetheless surmisihat
those random epistemic networks did best in whiuh
number of links was so low Within the assumptior
noted, those random epistemic networks did begthich
the number of links waapproximately half the number

nodes. From that pealit approximately 2Elinks the
success of networks decayas links increase
approximately 100the point at which there are twice
many links as nodes From that point on decay

epistemicsuccess continues, though at a much slower

6. Comparing Threshold Phenomen

One reason for using random networks in this stigc
that they are among the best understood. Thereira
particular, well established threshold phenomeganding
increased linkages in random networks. A prin
guestion, therefore, this: Does the epistemic threshold
increased linkages documented abowerely track som
more familiar threshold in network phenome

What is it about a network that accounts epistemic
success of the sort detailed here? The usual stiggd
have heardin response to that question is ‘cluster
coefficient’ the mean probability that two nodes linkec
a common node will also be linked to each othert(gv&
Strogatz 1998for clarification see Barrat and Weigt 20
and Newman et. al. 2001).

The hypothesis that it is variability in clusteritizat is
responsible for variation in epistemic successgfé@sfectly
the extremes of results outlined in earlier sectioA ring
network has a clustering coefficient of preciselynOne of
an agent’s neighbors are also neighbors of eachr.o
Fully connected networks have a clustering coeffitiof
1: all of each agent’s neighbors are also agentsach
other.

If it were clwstering coefficient that were the decidi
factor regarding epistemic success of the sortirmd]
however, we would expect the graph of epistemicass
in Fig. 7 to mirror the graph of changes in clusig
coefficient. Figure 8hows mean clusterincoefficient
across our 1000 runs at each number of links bet
nodes.

Whatever network property is responsible for thods!
phenomena in epistemic nef&g. 8 makes it clear that
cannot be clustering coefficientClustering traces a cle
linear ascentwith increased number of nodes, with
reflection of the epistemic thresholds evidenthe grapt
of epistemic success.

0.25 7

0.2 1

0.1 1

Average Clustering Coefficient

5 30 55 80 105 130 155 180 205 230 255 280
Number of links in random network of 50 nodes

Fig. 8 Mean clustering coefficient across 1000sraheact
number of links in random networks of 50 nod

There is a welknown threshold in random nets w
increasing number of links: the size of theant
component, or largest number of connected linkss
establishedjuite early (Erdos and Renl1959, 1960), the
increase in size of the giant componewith increased
numbers of links in random networis far from linear: it
shows a clear threshold at approximately the nunafs
nodes. At that point there is a dramatic increase in ilae
of the giant component.

For the networks at issue, that threshold appin Fig.
9. The chart shows thaverage giant component size
our 1000 runs across each number of added

Size of Giant Component

M
5 30 55 80 105 130 155 180 205 230 255 280
Number of links in random network of 50 nodes

In attempting to explain results regarding episte
success, however, the threshold of giant componsizet
seems to be in the wrong place.bégins at approximate
half the number of nodes, tapering off at slighlgrenthar
the number of nodes.This threshold, of course, is al
unidirectional. Though it may be a contributingtfa to
the epistemic success threshold noted, it canffer a
complete explanation.



Here we offer a final candidate for a network pmy
that might correlate with epistemic threshold: gwerage
path length within the giant or largest clusterim@e
average path length is not a useful measure heoajse it
is defined only for connected graphs that contno
isolated nodes or sub-graphs. Thequirement does ni
hold uniformly for networks at issue below approately
150 links, and so cannot be used to measure athe:
spread. Average path lengtlithin the giant componen
however, can be used as a measuBgaphed across o
runs that measure generates the threshold shokig.id0.

4.5 1

Mean Path Length in Giant Cluster

5 30 55 80 105 130 155 180 205 230 255 280

Number of links in random network of 50 nodes

Fig. 10 Average path length within the largesstdu acros
1000 runs at each number of links in random netws/ofi60
nodes.

Here finally we have a network property with a ireld
similar in shape to that we are tracking. On thasis
mean patHength in the giant cluster of a network seen
prime candidate for a factor that favors epistesticces:
on the particular epistemic landscape at issue

Questionsremain, however. Although the graph
mean path length has much the shape of raph of
epistemic succesis peaks are at the wrong poiniMean
path length peaks at that point that the numbelind®
equals the number of nodes. Epistemic succes
contrast, peaks at the point that the number &&lis half
that. Epistemic wccess seems to level when links ec
twice the number of nodesvhereas the decay in me
path length is more gradual.

Although qualitative comparison of effects indicag
mean path length in giant clustas a primary candida
among contributing caes, therefore, it does not appea
give us the whole story. Even if the general shap
success qualitatively tracks that of mean pathttengthe
largest cluster, we do not yet understand whyaitks it af
a different point. Although the similéies in thresholds i
striking, we don't yet understand the differenct

6. Further work

The results above are confined to particular assiomg
regarding updating dynamics within networks, usia
specific epistemic landscape for comparison throud.
Further work is required to explore the effect baging
some of those updating assumptions, perhaps nmg
different incentive structures for investigatorsFurther
work is alsorequired in order to explore the relation
thresholds noted to gigular characteristics of episten
landscape: to track what characteristics of netw
optimize epistemic success on specific landsca

In the long run, such an exploration promises a
epistemology, offering a better understanding oé
dynamicsof knowledge acquisition in science. In the lc
run, goals may be normative as well as descripti8ech
an exploraiton might also offer the possibility
optimizing ongoing scientific exploration.  Givernrst
indications of what an area of investion is like—a first
glimpse of an epistemic landsc—we might be able to
tell whether such a landscape would most effegtived
investigated by big science or small, by a few gsoof
closely linked investigators, a scattered set
independents, or see combination of the tw

As indicated in introduction, these results arerided
as a brief introduction to some of the surprises
subtleties of informational dynamics across epigte
networks—a first word on the topicbut far from the last.
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