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Abstract 
A small consortium of philosophers has begun work on the 
implications of epistemic networks (Zollman 2008 and 
forthcoming; Grim 2006, 2007; Weisberg and Muldoon 
forthcoming), building on theoretical work in economics, 
computer science, and engineering (Bala and Goyal 1998, 
Kleinberg 2001; Amaral et. al., 2004) and on some experimental 
work in social psychology (Mason, Jones, and Goldstone, 2008).  
This paper outlines core philosophical results and extends those 
results to the specific question of thresholds.  Epistemic 
maximization of certain types does show clear threshold effects.     
Intriguingly, however, those effects appear to be importantly 
independent from more familiar threshold effects in networks.   

1. Epistemology and Scientific Networks 

Epistemology is defined as the study of knowledge.  The 
traditional focus in the field, however, has long been 
limited to the study of the individual epistemic agent. 
Traditional epistemology treats knowledge acquisition as 
an individual endeavor.  In Hume, Descartes, and Kant, 
epistemology is told as the story of a single individual 
trying to figure out what the world is like—an attempt to 
answer the question of how an individual agent figures out 
the structure of the world.   

A small consortium of contemporary philosophers has 
begun work on a different approach (Zollman 2008 and 
forthcoming; Grim 2006, 2007; Weisberg and Muldoon 
forthcoming).  In this recent work the essential emphasis is 
not on communities of epistemic agents rather than on the 
individual.   

How does an individual figure out the structure of the 
world?  The truth is that no individual does.  It is cultures 
and communities that plumb the structure of reality; 
individuals figure out the structure of the world only as 
they participate in the epistemic networks in which they 
are embedded.   

Science is undoubtedly our pre-eminent example of 
knowledge acquisition.  But what characterizes 
contemporary scientific research is not a catalog of isolated 
investigators but coordinated interactive networks of 
investigation. To understand knowledge acquisition in 
science one must understand more than the work of 

individual participants.  One must understand the structure 
and dynamics of the enterprise as whole.   
 Here questions are importantly different than those in 
traditional epistemology.  A scientific community can be 
envisaged as a network of interactive agents attempting to 
limn reality on the basis of uneven, conflicting, and 
sometimes ambiguous data.  How does the network 
structure of collaboration and competition, of data sharing 
and information transfer, affect knowledge acquisition in 
the community at large?  What kinds of network structures, 
of what kinds of agents, will best achieve scientific goals—
scientific goals of accuracy, for example?  In what ways 
will those structures be sensitive to the specific form of the 
problem, or to the distribution or uncertainty of data?  
Those are questions central to this new approach, and 
questions for which the work outlined below offers some 
early and partial clues. 

Given what we know of networks in general, it is to be 
expected that the dynamics of information acquisition and 
exchange across an epistemic network will not be reducible 
to any simple aggregate measure across individuals.  The 
modeling results offered here substantiate that expectation 
in full.  One of the implications of epistemic networks, 
tracked here in terms of thresholds, is the robust and 
surprising finding that a scientific community may learn 
more when its individual scientists learn less.  In terms of 
central scientific goals such as accuracy, increased 
informational linkages between scientists may not always 
be a good thing.   

17th century science was characterized by distributed 
informational networks with limited linkages between 
investigators.  21st century science is characterized by 
totally connected networks across the internet.  One way of 
phrasing a central result in what follows is that for some 
central scientific goals, including accuracy, and for some 
topics of investigation, the network structure of 17th 
century science appears to be superior to our own.   

Section 2 outlines the notion of epistemic landscape 
crucial to the model, with details in section 3 of initial 
networks surveyed.  The core result that a scientific 
community can learn more when individual scientists learn 
less is presented in section 4.  Sections 5 and 6 further 
explore the question of precisely what properties of 



networks are important for that result.  Here results show 
clear thresholds for epistemic maximization of certain 
types with increasing number of links in random networks.   

Epistemic maximization on networks of the type at 
issue, it turns out, exhibits clear threshold phenomena. But 
it also turns out that the epistemic thresholds at issue are 
surprisingly independent from other network; they do not 
correlate cleanly with thresholds in any of the other 
network properties one might expect.   

Results here are intended as an introduction, with first 
hints regarding some of the surprises and subtleties of 
informational dynamics across epistemic networks.  These 
are offered as a first word on the topic, rather than the last 
word; it quickly becomes clear how much we do not yet 
understand, and how much more work remains to be done.   

2. Epistemic Landscapes  

   We can envisage an epistemic landscape as a topology of 
ideal data—data regarding alternative medical treatments, 
for example (Fig. 1).  In such a graph points in the xz plane 
represent particular combinations of radiation and 
chemotherapy, or particular hypotheses regarding the best 
combination.  Graph height on the y axis represents some 
measure of success: the proportion of patients in fact cured 
with combinations of radiation and chemotherapy at that 
rate.  If you use radiation therapy at rate x, and 
chemotherapy at rate z, you will get the proportion of cures 
represented on the y axis hovering over that point.   

 
Fig. 1  A three-dimensional epistemic landscape.  Points on the xz 

plane represent hypotheses regarding optimal combination of 
radiation and chemotherapy; graph height on the y axis represents 

some measure of success. 
 
 This first epistemic landscape is a medical one, but the 
specific topic of investigation is unimportant for our 
broader epistemic concerns.  One might have an epistemic 
landscape of magnetology readings for different 
hypothetical locations of a shipwreck, or of irridium 

stratigraphy world-wide as feedback regarding different 
hypotheses regarding the timing of the K-T asteroid 
collision, or any measurable variable y that confirms some 
hypotheses rather than others regarding the interplay of 
variables x and z.   

It is important to emphasize, however, that the concept 
of an epistemic landscape represents ideal data across a 
full range of possible hypotheses.  Different investigators 
will test different hypotheses and will get differential 
feedback regarding those hypotheses.  As an individual 
investigator, however, one will not be able to see the 
epistemic landscape as a whole.  One will see results only 
at a point in the graph, in a small area or in a scattering of 
points.   

Despite those limitations, our job description as 
epistemic agents is to find the theory that is best supported 
by data.  The goal of investigation is to find the highest 
points in the epistemic landscape—the best confirmed 
hypotheses, or the most warranted predictions, the most 
reliable medical treatments.  Fortunately, we do not work 
alone: we are linked to other investigators as part of a 
larger network.   

 The model at issue here employs simpler two-
dimensional epistemic landscapes (Fig. 2).   

 

 
 

 
 

 
 
Fig. 2  Two-dimensional epistemic landscapes.  Values on the x 

axis represent alternative hypotheses.  Values on the y axis 
represent the ideal epistemic payoff for particular hypotheses.  

 



In the first landscape data converges smoothly to a 
single best hypothesis or medical treatment.  The second 
represents a slightly more complex landscape, in which 
particular combinations of drugs do well, perhaps, but 
combinations in between do worse.  The third is a still 
more complex landscape, in which some peaks are smooth 
and easily climbed, but represent inferior outcomes.  The 
hypotheses or medical treatments they lead to are not the 
best.  The best outcome, however—that hypothesis that 
would be best confirmed, or that medical treatment that 
would be most effective—is hidden in a spike with a 
narrow base, and is thus harder to find. 

3. Modeling Epistemic Networks

Suppose we have a population of agents, each of whom 
starts with a hypothesis.  Here that hypothesis is 
represented by a single point on the x-axis 
landscape.  In testing their hypotheses, our agents 
accumulate data as feedback—a percentage of patient 
cures, for example.  But our agents are also networked to 
others; they can see not only the success rate of their own 
hypothesis but the success rate for the hypotheses of those 
to whom they are linked.     
 Agents change their hypotheses based on the success 
rates of those to whom they are linked.  As an agent in this 
model, you can see how well the hypotheses of some other 
agents are doing; if their hypotheses are better supported 
by the data than yours, you shift your hypothesis in their 
direction.  If your hypothesis is the best of those visible to 
you, on the other hand, you stick with it.   
 With even a network model this simple there are a 
number of intriguing parameters.  One of the 
built into this model is a ‘shaking hand’: when you aim to 
duplicate another’s hypothesis, you may be slightly off.  
Your lab conditions may be slightly different
the other agent, or your chemicals impure, or your sample 
slightly biased.  You therefore end up with a hypothesis 
that is not a precise match of that you are imitating but is 
merely close by.  One result, of course, is that you 
therefore explore more of the epistemic landscape.  The 
model used here builds in a ‘shaking hand’ that puts one in  
random region within 4 points either side of a target 
hypothesis. 
 The model also incorporates elements of ‘speed’ and 
‘inertia’.  In pursuing a more successful hypothesis, does 
one jump to that conclusion or approximate it halfway each 
time?   This model employs the latter assumption, with a 
‘speed’ of 50%.  It also builds in an ‘inertia’ factor of 50%, 
representing agents’ stubborn investment in 
hypothesis.  In each of 100 steps each agent has only a 
50% probability of shifting in the direction of a superior 
hypothesis.   
 The crucial parameter the model is designed to 
investigate, of course, is network structure (Fig. 3).  
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Fig. 3  Structures of epistemic networks used in the model.  

Shown here with 20 nodes for visibility, networks used in the 
model linked a population of 50 nodes.  
 
Working with 50 agents, we studied networks in which the 
network structure is: 

(1) a simple ring, with contacts to a single agent on each 
side;  

(2) a small world network, here a simple ring with a 9% 
probability of rewiring; 

(3) a ring with double radius, in which each agent has 
contacts with two agents on each side;

(4) a wheel, also known as a ‘royal family
economics literature, in which each agent on the ring also 
has contact with a central agent; 
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contacts with two agents on each side; 

(4) a wheel, also known as a ‘royal family’ in the 
economics literature, in which each agent on the ring also 



(5) a hub, in which agents have contact only through that 
central agent; 

(6) a random network, here with a 10% probability of 
combination between any two nodes; 

(7) A total, connected, or complete network, in which all 
nodes are linked to all others.   

Though illustrated in terms of 20 agents in Fig. 3, the 
model employed the network types above with 50 agents.  
With the noted parameters for shaking hand, speed, and 
inertia outlined above, each agent in the network updated 
on those two which it was linked through a series of 100 
steps.  100 runs were performed for each network with re-
randomization of agent hypotheses and network structure 
in the case of small world and random networks.   

4. Network Effects in Epistemic Maximization  

 In which networks, exploring which epistemic 
landscapes, will agents succeed in finding the optimal 
hypothesis?  Here our measure was whether any agent in 
the network found the optimal hypothesis; assuming a 
process of convergence to the highest all in a connected 
cluster would eventually follow suit.   
 For the simpler two epistemic landscapes in Fig. 2, with 
smooth climbs to their peaks, all of the networks surveyed 
found the highest point in all 100 cases.  Those networks 
which systematically found it most quickly were those with 
the highest connection and degree.  In these studies it was 
the total or connected network which most quickly found 
the peak.   

Results were intriguingly different for the more complex 
network represented by the epistemic landscape in Fig. 4, 
in which the optimal hypothesis is hidden in a narrow 
peak. 

 

 
 

Fig. 4.  The more complex epistemic landscape, in which the 
optimal hypothesis is hidden in a narrow peak.   

 
In this case none of the networks surveyed found the 
optimal hypothesis in all 100 runs.  The percentages of 
successful runs, moreover, show a wide variance with 
different network structure (Fig. 5). 

For this epistemic landscape, a regular ring of networked 
agents connected to a single neighbor on each side, with a 
'shaking hand' of 4 points and using speed and inertia 

factor of 50%, converges on the highest point in 66% of 
the runs. 

For a 'small world' variation, with a 9% probability of 
rewired connections, the success rate drops immediately to 
55%.   

Connect each node not with a single neighbor on each 
side, as in the single ring, but with two neighbors on each 
side and the success rate drops immediately to 40%.   
 Networks configured as wheels and hubs give a 42% 
and 37% success rate in finding the optimal hypothesis.   

Random networks with a 10% probability of connection 
between any two nodes give a success rate of 47%.   

Worst of all, operating on this epistemic landscape with 
the background assumptions noted, are total or connected 
networks.  Here the chance of finding the epistemic 
optimum is a mere 32%--approximately half the success 
rate of a simple ring.   
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Fig. 5  Percentages of 100 runs in which networks of different 

structures found the optimal hypothesis in the epistemic 
landscape of Fig. 4. 



Scientific exploration has multiple desiderata.  For 
central scientific goal of accuracy—here represented by 
finding the optimal hypothesis in an epistemic landscape
it is clear that informational linkages between investigators 
is thus not an unadulterated good.  Given a tendency to 
follow the lead of a more successful hypothesis, even with
an ‘inertia’ parameter of 50% and a 50% restriction on 
‘speed,’ increased linkages between nodes can result in a 
convergence on a suboptimal hypothesis.  The problem 
with increased linkages is that there is convergence
hypothesis that is ‘best in show’—the best presently 
occupied by anyone in the network—but which is not the 
highest in the landscape or the best in fact.  Epistemic 
networks with increased linkages have a tendency to let 
exploitation trump exploration, resulting in quick 
convergence to a sub-optimal epistemic outcome.  
 A scientific community may therefore learn 
its individual scientists learn more—more, that is, 
regarding others’ immediate results.  
networks of the 21st century, massively connected through 
the internet, approach the character of a total or connected 
graph.  The scientific networks of the 17
significantly more distributed: investigators communicated 
in large part on an individual basis and by letter, perhaps in 
a structure as distributed as that of a ring network.
agent updating assumptions used here, and in cases in 
which the epistemic landscape has something of the 
character of Fig. 4, it is science on a 17th century network 
rather than a 21st century network that could be expected to 
prove more successful.   

5. Increased Linkages in Random Networks: 
An Epistemic Threshold

 Precisely what property is it of the networks above that 
facilitates epistemic success in such a case?  

To this point we have been working with a small sample 
of assorted networks.  The results are suggestive, but 
further exploration is needed. What is required for a deeper 
understanding is observed variability in epistemic success 
with variation in a single network parameter or small 
combination of parameters.  In pursuit of that 
understanding, the results that follow leave 
wide variety of networks surveyed above, concentrating 
instead on a single form.  The goal within that focus is to 
track the effect on epistemic outcome of varying the 
number of links between nodes. 
 A number of assumptions are retained from the studies 
above.  We again use the epistemic landscape of Fig. 4, 
with networks of 50 agents, a ‘shaking hand’ of 4 points 
variability, and using an updating ‘speed’ and ‘inertia’ of 
50%.  Here our networks will be random networks 
throughout, however—perhaps the most studied of all 
network structures.  None of the networks used, therefore, 
have the clear symmetry of a simple ring, and none will be
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Fig. 6  Sample random networks with increasing numbers of 
links.  Giant cluster shown in black in each case, with other links 

in gray. 
 
 How does increased connectivity in random networks 
affect epistemic outcome?  The results appear in Fig. 7, 
showing the result of increasing number of random links 
between nodes from 5 to 300.  Shown for each
links at intervals between 5 and 300 is the percentage o
1000 runs in which random networks with that number of 
links succeeded in finding the highest point on the 
epistemic landscape.   
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Fig. 7  Percentage of 1000 runs in which random networks 
nodes with the given number of links succeeded in finding the 
optimal hypothesis in the epistemic landscape of Fig. 4.  
 
The results show a clear epistemic 
approximately 25 nodes.  Although this is 
results outlined above, it is nonetheless surprising that 
those random epistemic networks did best in which the 
number of links was so low.  Within the assumptions 
noted, those random epistemic networks did best in which 
the number of links was approximately half the number of 
nodes.  From that peak at approximately 25 
success of networks decays as links increase to 
approximately 100, the point at which there are twice as 
many links as nodes.  From that point on decay in 
epistemic success continues, though at a much slower rate.  

6. Comparing Threshold Phenomena

 One reason for using random networks in this study is 
that they are among the best understood.  There are, in 
particular, well established threshold phenomena regarding 
increased linkages in random networks.  A primary 
question, therefore, is this: Does the epistemic threshold of 
increased linkages documented above merely track some 
more familiar threshold in network phenomena?
 What is it about a network that accounts for
success of the sort detailed here?  The usual suggestion I 
have heard in response to that question is ‘clustering 
coefficient’: the mean probability that two nodes linked to 
a common node will also be linked to each other (Watts & 
Strogatz 1998; for clarification see Barrat and Weigt 2000 
and Newman et. al. 2001).   

The hypothesis that it is variability in clustering that is 
responsible for variation in epistemic success fits perfectly 
the extremes of results outlined in earlier sections.  A ring
network has a clustering coefficient of precisely 0: none of 
an agent’s neighbors are also neighbors of each other.  
Fully connected networks have a clustering coefficient of 
1: all of each agent’s neighbors are also agents of each 
other.   

If it were clustering coefficient that were the deciding 
factor regarding epistemic success of the sort outlined, 
however, we would expect the graph of epistemic success 
in Fig. 7 to mirror the graph of changes in clustering 
coefficient.  Figure 8 shows mean clustering 
across our 1000 runs at each number of links between 
nodes. 

Whatever network property is responsible for threshold 
phenomena in epistemic nets, Fig. 8 makes it clear that it 
cannot be clustering coefficient.  Clustering traces a clear 
linear ascent with increased number of nodes, with no 
reflection of the epistemic thresholds evident in the graph 
of epistemic success.   
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Fig. 8  Mean clustering coefficient across 1000 runs at each 
number of links in random networks of 50 nodes.  
 
 There is a well-known threshold in random nets with 
increasing number of links: the size of the g
component, or largest number of connected links.  As 
established quite early (Erdos and Renyi 
increase in size of the giant component 
numbers of links in random networks 
shows a clear threshold at approximately the number of 
nodes.  At that point there is a dramatic increase in the size 
of the giant component.   
 For the networks at issue, that threshold appears 
9.  The chart shows the average giant component size in 
our 1000 runs across each number of added links.
 

 
In attempting to explain results regarding epistemic 
success, however, the threshold of giant component size 
seems to be in the wrong place.  It begins at approximately 
half the number of nodes, tapering off at slighly more than 
the number of nodes.  This threshold, of course, is also 
unidirectional.  Though it may be a contributing factor to 
the epistemic success threshold noted, it cannot o
complete explanation. 

 

Fig. 8  Mean clustering coefficient across 1000 runs at each 
number of links in random networks of 50 nodes.   
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 Here we offer a final candidate for a network property 
that might correlate with epistemic threshold: the average 
path length within the giant or largest cluster.  Simple 
average path length is not a useful measure here, becau
is defined only for connected graphs that contain 
isolated nodes or sub-graphs.  That requirement does not 
hold uniformly for networks at issue below approximately 
150 links, and so cannot be used to measure across the 
spread.  Average path length within the giant component, 
however, can be used as a measure.  Graphed across our 
runs that measure generates the threshold shown in Fig. 10.  
 

Fig. 10  Average path length within the largest cluster across 
1000 runs at each number of links in random networks of 50 
nodes.   
 
Here finally we have a network property with a threshold 
similar in shape to that we are tracking.  On that basis 
mean path length in the giant cluster of a network seems a 
prime candidate for a factor that favors epistemic success 
on the particular epistemic landscape at issue here.
 Questions remain, however.  Although the graph of 
mean path length has much the shape of the g
epistemic success, its peaks are at the wrong points.  
path length peaks at that point that the number of links 
equals the number of nodes.  Epistemic success, in 
contrast, peaks at the point that the number of links is half 
that.  Epistemic success seems to level when links equal 
twice the number of nodes, whereas the decay in mean 
path length is more gradual.   
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among contributing causes, therefore, it does not appear to 
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striking, we don’t yet understand the differences.  
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average path length is not a useful measure here, because it 
is defined only for connected graphs that contain no 

t requirement does not 
hold uniformly for networks at issue below approximately 
150 links, and so cannot be used to measure across the 

within the giant component, 
Graphed across our 

runs that measure generates the threshold shown in Fig. 10.   

 
Fig. 10  Average path length within the largest cluster across 
1000 runs at each number of links in random networks of 50 

Here finally we have a network property with a threshold 
similar in shape to that we are tracking.  On that basis 

length in the giant cluster of a network seems a 
prime candidate for a factor that favors epistemic success 
on the particular epistemic landscape at issue here. 

remain, however.  Although the graph of 
mean path length has much the shape of the graph of 

its peaks are at the wrong points.  Mean 
path length peaks at that point that the number of links 
equals the number of nodes.  Epistemic success, in 
contrast, peaks at the point that the number of links is half 

uccess seems to level when links equal 
, whereas the decay in mean 

qualitative comparison of effects indicagtes 
as a primary candidate 

ses, therefore, it does not appear to 
give us the whole story.  Even if the general shape of 
success qualitatively tracks that of mean path length in the 
largest cluster, we do not yet understand why it tracks it at 

ities in thresholds is 
we don’t yet understand the differences.   

6. Further work

The results above are confined to particular assumptions 
regarding updating dynamics within networks, using a 
specific epistemic landscape for comparison throughout
Further work is required to explore the effect of changing 
some of those updating assumptions, perhaps mirroring 
different incentive structures for investigators.  
work is also required in order to explore the relation of 
thresholds noted to particular characteristics of epistemic 
landscape: to track what characteristics of networks 
optimize epistemic success on specific landscapes.  

In the long run, such an exploration promises a new 
epistemology, offering a better understanding of the 
dynamics of knowledge acquisition in science.  In the long 
run, goals may be normative as well as descriptive.  Such 
an exploraiton might also offer the possibility of 
optimizing ongoing scientific exploration.  Given first 
indications of what an area of investiga
glimpse of an epistemic landscape
tell whether such a landscape would most effectively be 
investigated by big science or small, by a few groups of 
closely linked investigators, a scattered set of 
independents, or some combination of the two. 

As indicated in introduction, these results are intended 
as a brief introduction to some of the surprises and 
subtleties of informational dynamics across epistemic 
networks—a first word on the topic, 
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6. Further work  

The results above are confined to particular assumptions 
regarding updating dynamics within networks, using a 
specific epistemic landscape for comparison throughout.  
Further work is required to explore the effect of changing 
some of those updating assumptions, perhaps mirroring 
different incentive structures for investigators.  Further 

required in order to explore the relation of 
ticular characteristics of epistemic 

landscape: to track what characteristics of networks 
optimize epistemic success on specific landscapes.   

In the long run, such an exploration promises a new 
epistemology, offering a better understanding of the 

of knowledge acquisition in science.  In the long 
run, goals may be normative as well as descriptive.  Such 
an exploraiton might also offer the possibility of 
optimizing ongoing scientific exploration.  Given first 
indications of what an area of investigation is like—a first 
glimpse of an epistemic landscape—we might be able to 
tell whether such a landscape would most effectively be 
investigated by big science or small, by a few groups of 
closely linked investigators, a scattered set of 

me combination of the two.  
As indicated in introduction, these results are intended 

as a brief introduction to some of the surprises and 
subtleties of informational dynamics across epistemic 

a first word on the topic, but far from the last.  
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