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[. Introduction

How do conventions of communication emerge? Howalinds or gestures take on a
semantic meaning, and how do pragmatic convengamerge regarding the passing of adequate,
reliable, and relevant information?

My colleagues and | have attempted in earlier wor&xtend spatialized game theory to
guestions of semantics. Agent-based simulatiotisate that simple signaling systems emerge
fairly naturally on the basis of individual inforth@n maximization in environments of
wandering food sources and predators. Simple Bgnamerges by means of any of various
forms of updating on the behavior of immediate hbays: imitation, localized genetic
algorithms, and partial training in neural nets.

Here the goal is to apply similar techniques teqgions of pragmatics. The motivating
idea is the same: the idea that important aspégsagmatics, like important aspects of
semantics, may fall out as a natural results armftion maximization in informational
networks. The attempt below is to simulate fundataeslements of the Gricean picture: in
particular, to show within networks of very simplgents the emergence of behavior in accord
with the Gricean maxims. What these simulatiorggsst is that important features of
pragmatics, like important aspects of semanticsitd@ave to be added in a theory of
informational networks. They come for free.

Sections Il and Il outline some of the backgrowfhdhe current work: emergence of
cooperation in spatialized game theory and the gemee of a simple semantics among agents in
a simulated environment of wandering food sourcesmedators. Section IV applies the
techniques developed there to the case of pragsnatic

The focus of the current work is the emergendahe@iGricean maxims themselves.
Communicative exploitation of those maxims in casagional implicature and inference is a
further matter, and the simulations used here dgewerally take us that far. In the case of
scalars, however, Section V shows that coordinagédvior in the general region of Gricean
implicature does appear even for agents and envieais as simple as those modeled here.

Color illustrations and animations for this chapten be found at
www.pgrim.org/pragmatics.

Il. Cooperation in Spatialized Game Theory

In classical game theory, we deal with the intoas of small numbers of idealized
agents. In evolutionary game theory we are dealitig whole populations, applying principles
of replicator dynamics pioneered by R. A. Fishethi@oretical biology. The result is a model
beautiful for its simplicity and mathematical ease.both theoretical biology and game theory,
however, replicator dynamics brings with it whagirtibe termedlobal assumptions:
assumptions of randomly mixed interactions withiarge population, and assumptions of
randomly distributed reproduction.



It is spatialized game theory that is the necgssackground for the results below. The
focus of spatialized game theory is the dynamidsal action within a network structure rather
than global interaction across a population. Heents do not interact randomly with all other
agents in the population. They interact (or intereith increased probabilities) with specific
agents—their neighbors in the network structurecdl rather than global interaction of this type
is addressed in theoretical biology under the tersecosity'.

Figure 1 offers an example of spatialized gamerthasing the simple reactive strategies
in the iterated Prisoner's Dilemma: the eight sgggs that turn on merely an initial move
(cooperate or defect) and what the other playepdithe previous round. The eight Boolean
combinations of play for initial move, reactiondooperation, and reaction to defection include
All-Defect, All-Cooperate, Cooperate-then-All-Defe€it for Tat, and Suspicious Tit for Tat
(like Tit for Tat except starting with an initiaktection).

In this illustration a randomization of strategieembedded in the spatialized lattice
familiar from cellular automata. All play is loeaindividual cells play only with immediate
neighbors touching them on the sides or the didgokiter a series of 200 games, players look
to see if any neighbor has achieved a higher sdésa, they update to the strategy of their most
successful neighbor.

The agents in such a model are of course as egastiny in classical game theory. The
general question of interest is how conditionalpgration, in the form of a dominance by Tit-
for-Tat, might develop.

Updating by imitation in this kind of network twout to be a powerful mechanism for
the emergence of cooperation. Figure 1 showswblkeiton of a randomized array, with early
success by All Defect (animation at www.pgrim.orgfpmatics). Because of local interaction
and local imitation, however—because of 'viscostgdmmunities of mutually reinforcing Tit
for Tat then expand, eventually occupying the erdiray (Grim 1995, 1996; Grim, Mar & St.
Denis 1998Y.
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Figure 1. Conquest by TFT in a spatialized enviment. Typical evolution of a randomized
array of the 8 reactive Prisoner's Dilemma straggivhere cells copy the strategy of their most
Successful neighbor. TFT in black, All-D in whit&enerations 1, 5, 10 and 15 shown. A full
animation of the evolution of the array can be ssenvw.prim.org/pragmatics

It is worthy of emphasis that spatialization isaial to these results. If one of the
mechanisms at issue is made global rather thaih kheseffect is broken: cooperation no longer
proves dominant. Suppose, for example, that egehtaipdates its strategy not by imitating the
strategy of its most successful neighbor but byatirig the strategy of the most successful cell
in the entire array. With such an alteration, pefitive play remains local but updating
becomes global. In that case Tit for Tat is dritedistinction and we have a clear conquest by
All-Defect (Figure 2)
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Figure 2. Conquest by All-Defect with a global@asption. Typical evolution of a randomized
array of the 8 reactive Prisoner's Dilemma straggising global replacement: in each
generation 5% of the array is replaced with thatsgy of the most successful cell in the array.

[1l. Studies in Communication

It is clear that game-theoretic cooperation canrgm distributed networks. Can
patterns of simple signaling emerge in a similay®va&an a dynamics this simple produce
simple forms of communication? Though the modetewhniques are very similar, the games at
issue in this exploration go well beyond the sinfptesoner's Dilemma.

The basic model again uses an array of individimaéstwo-dimensional latticé.In order
to keep things simple, individuals in this modehdanove: they are embedded in the array
something like coral in a reef. What does mowefaod sources and predators, each of which
travels in a random walk, cell by cell, acrossdhmy. It should be emphasized that the food
sources are foosburces—individuals feed when a food source lands on thaimthe food
sources themselves are not consumed and do nppdea Food sources are like a school of
fish, perhaps, continuing their random walk aneoiffg nourishment for the next individual
down the line. In much the same way, predatoteermodel are never sated: they continue to
pose a danger in their random walk.

Each of the individuals embedded in the arrayehasall behavioral repertoire. It can
open its mouth, hide, stay in neutral, make a sdu¢iteard by itself and immediate neighbors),
or make a sound 2. Each individual also has d@duiniange of perception. It knows when it is
fed—when its mouth is open and a food source lands—and when it is hurt—when it is not
hiding and a predator lands on it. Each agenthean and distinguish sounds made by itself or
immediate neighbors; it knows when someone justensadind 1, for example, or someone just
made sound 2.

The behavior of each individual is dictated byrade strategy code. An agent's code
may dictate that it opens its mouth only when @rsesound 1, for example, or hides only when
it hears sound 2. An agent's code might also téi¢keat itheveropens its mouth. When an
individual opens its mouth and food is on it, itrgaa point for ‘feeding’. When a predator hits
an individual that isn’t hiding, that individual ‘ilsurt’ and loses a point. But opening one’s



mouth, hiding, and making a sound all exact angyneost. There are no costless actions in this
model, and there are no costless signals.

This model differs from others in the literatuneai number of ways. One difference is a
thorough spatialization; in this model, all actisriocal action. Some of Cecilia and Paolo Di
Chio’s work puts a similar emphasis on spatial@a{iDi Chio & Di Chio 2007). A second
difference is the fact that the emergence of siggas ecologically situated. The question is
how arbitrary sounds take on a meaning, but théegbins an environment with some built-in
significance of its own: the importance for indival agents of capturing food and avoiding
predators.

Many of the models in the literature employ sormgglike a Lockean theory of
meaning, in which meanings correspond to somethimgdividual heads. In contemporary
guise, those Lockean meanings often take the fémapoesentation matrices, with convergence
on the same matrix in different individuals takertlae measure of ‘successful communication.’
The model offered here is much closer to a thebryeaning as use. Here there is no matching
of matrices in different heads; the measure of camoation is simply and solely successful
behavioral coordination across a community.

A final distinctive feature of the model is its phasis on individual gains, tied directly to
individual success in capturing food and avoidingdators. Unlike many models—unlike even
Lewis's signaling games—there is no 'mutual rewfardsuccessful communication or mental
matching, for example. Prashant Parikh’s modedsesthis emphasis on individual gains
(Parikh 2001, 2006, Parikh & Clark 2007).

What my collaborators and | were interested in thaspossibility that patterns of simple
signaling might emerge as a result of a situates@wics of information: that communication
might emerge in response to environmental pressurgise basis of individual gains. We
investigated three forms of strategy updating ne¢hstages of the work. In initial studies,
strategy change was by simple imitation, just aténcooperation studies above (Grim, Kokalis,
Tafti & Kilb 2000). In a second series of investigns, we cross-bred our strategies using
genetic algorithms, but restricted our genetic atjms—Iike everything else—to purely local
instantiation. Genetic algorithms are generallgligal globally; individuals ranking highest on
some fitness function are selectively cross-bratitheir offspring are re-introduced randomly
into the population as a whole. We replaced thaia algorithm with a local one in which
strategies are ‘bred’ as hybrids between the gfyatéa cell and that of its most successful
neighbor; local success results in local hybridawdpction (Grim, Kokalis, Tafti & Kilb, 2001).

In more recent models, our individuals instantgieple neural nets, doing a partial training on
the behavior of successful neighbors (Grim, St.iD&Kokalis 2003; Grim, Kokalis, Alai-

Tafti, Kilb & St. Denis 2004). On the basis ofdess learned regarding the pitfalls of perfect
worlds (Grim, P., Kokalis, T., Alai-Tafti, A., & Kb, N. 2000) and following hints in the work of
Martin Nowak (Nowak & Sigmund 1990, 1992), we watklroughout with a stochastically
imperfect world. In 5% of cases individuals opkeit mouths and in 5% of cases they hide
regardless of strategy or input.

Results using all three forms of strategy updasingwed an emergence of simple
signaling in a spatialized environment of wandeffmgd sources and predators. The following
sections summarize main points using results ftoemtore recent work with neural nets.

A. The Dynamics of Feeding, Predation, and Simpl8ignaling



For even creatures as simple as those outlineck th a behavioral strategy that would
seem to qualify as an elementary form of signali@gnsider a spatialized community of
individuals which share the following behaviorabsegy:

They make sound 1 when they successfully feed
They open their mouths when they hear a neighladensound 1

They make sound 2 when they are hurt
They hide when they hear a neighbor make sound 2

We have termed these 'perfect communicators.'f@aar sources migrate in a random walk
from cell to cell, never being entirely consumeélb suppose a community of ‘perfect
communicators’, and suppose that one individuatsssfully feeds. Because it's a 'perfect
communicator’, it makes sound 1. All its neighlbemes perfect communicators as well; when
they hear sound 1, they open their mouths. The $ooirce will migrate, and one of those
neighbors will successfully feed@hatcell will then make sound 1, alerting its neigtgoilhe
result in a community of ‘perfect communicatorsaishain reaction in which the food source is
successfully exploited on each round.

This advantage, of course, demands thahawea full community of ‘perfect
communicators’. For a single ‘perfect communicatbgre is no advantage to such a strategy at
all: given the energy cost for sounding and opeitsgiouth, in fact, there is a significant
disadvantage.

The dynamics are slightly different for predatotsan individual is hit with a predator
and gives an alarm call, his neighbors hide ancefbee arenot hit by the wandering predator.
Those neighbors therefore do not pass on the alalimBecause there is no alarm call, someone
does get hit by the predator on the next roundenEperfect communication’ therefore affords
protection against predators only on alternate dsurBecause of that difference in dynamics,
and in order to avoid a bias toward one environaderessure rather than another, we worked
throughout with twice as many predators as foodc@suacross the array.

Since our individuals have two sounds at theipalsl, of course, there are two versions
of ‘perfect communicators’. One uses sound 1dodfand sound 2 for predators; the other uses
sound 2 for food and sound 1 for predators.

B. Emergence of Communication in Spatialized Arrays oNeural Nets

In our simplest work with neural nets, our indivadisiare instantiated as perceptrons:
two-layer feed-forward nets of the form shown igife 3° This structure has two distinct
lobes. The left takes sound as input and outpbtther an individual opens its mouth, hides,
does neither or both. The right lobe takes astinfether it has been fed or hurt on a particular
round, outputting any sound the agent makes.

We use a bipolar coding for inputs, so that ‘heamsl 1’, for example, takes a value of
+1 if the individual hears sound 1 from an immeslia¢ighbor on the previous round, and takes
a value of -1 if it does not. Each input is mulad by the weight shown on arrows from it, and
the weighted inputs are then summed at the outpie.nTo that is added the value (positive or
negative) of the bias, which might alternativelytbeught of as a third weight with a constant
input of 1. If the total at the output node isajex than 0, we take our output to be +1, and the



individual opens its mouth, for example; if the gleted total is less than 0, we take our output to
be -1, and the individual keeps its mouth closddre as before an element of noise is built in:
in a random 5% of cases each individual will ogemouth regardless of weights and inputs.
On the other side of the lobe, individuals alseehida random 5% of cases.

open mouth hide make sound 1 make sound 2
bias 1 w 3 ias 2 hias 3 1L I ias 4
w1 L w5 wa
hear sound 1  hear sound 2 fed hurt

Figure 3 Perceptron structure of each agent eddzknh the spatialized environment of
wandering food sources and predators with paréahing on the behavior of successful
neighbors.

We code our behavioral strategies in terms obtitputs they give for possible pairs of
inputs. Figure 4 shows the possible inputs atrlseand 1’ and ‘hear sound 2’ for the left lobe
of the net, with samples of output pairs for 'opssuth’ and 'hide’ for these pairs of inputs. The
left-lobe behavior of a given strategy can thusdeed as a series of 8 binary digits. With a
similar pattern of behavioral coding for the ridive, we can encode the entire behavior of a net
with 16 binary digits. The sample space consis&g116 strategies in this sample space, but
there are only 2 that qualify as ‘perfect commutacsl.

Inputs for left lobe

no sounds heard just sound 2 heard  just sound 1 heard both sounds heard
00 01 10 11
Outputs
00 10 00 10
open hide open hide open hide open hide
mouth mouth mouth mouth

Figure 4 Possible pairs of inputs at 'hear sdurahd 'hear sound 2' for the left lobe of each
agent, with samples of output pairs for 'open maarld 'hide." This strategy opens its mouth
whenever it hears sound 2, and never hides. Watm#ar coding for the right lobe, the
behavior of each net can be coded as 16 binarisdigi

We populate our array with neural nets carryinglt random weights. After each 100
rounds, our individuals look around to see if thare more successful neighbors. If so, they do
a partial training on the behavior of their most@ssful neighbor. We use the standard delta
rule as the learning algorithm for our perceptroRer a set of four random inputs, the cell



compares its outputs with those of its target neagh At any point at which the behaviour of the

training cell differs from its target, we nudge leat the responsible weights and biases one unit
positively or negatively. Within the limits of oualue scale, use of bipolar values for target and
input allow us to calculate this simply as,eW= Woiq + (target x input) and biag, = biasiy +

target.

Our training run consists of only four random s#tgputs, with no provision against
duplication. Training will thus clearly be partiainly four sets of inputs are sampled, rather than
the full 16 possible, and indeed the same set reasampled repeatedly. The learning algorithm
is applied using each set of inputs only once, g leaving no guarantee that each weight
will be shifted enough to make the behaviouraletghce that would be observable in a
complete training. Partial training is quite deliately built into the model in order to allow
numerical combinations and behavioural strategiesiierge from training which might not
previously have existed in either teacher or learthereby allowing a wider exploration of the
sample space of possible strategies (for detagl<=sem, St. Denis, Kokalis, 2002 and Grim,
Kokalis, Alai-Tafti, Kilb, & St. Denis, 2004).

We start, then, with an array of perceptrons wathdomized weights and biases. Figure
5 shows the evolution of such a randomized array the course of 300 generations (animation
at www.pgrim.org/pragmatics). Here ‘perfect comioators' are coded in pure black and white,
though it should be noted that they appear helieegnby partial training. The initial display
contains no ‘perfect communicators' at all: theyrya by the mechanism of partial training on
successful neighbors, spreading by the same meBigire 6 graphs the resuit.
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Figure 5 Emergence of two dialects of perfect camicators, shown in solid black and white,

in a randomized array of perceptrons with part@hing on successful neighbors. All other
behavioral strategies are coded using shades pffigrédackgrounds and central dots. Centuries
1, 10, 50, 100, 200 and 300 shown. A full aninratbthe development can be seen at
Www.prim.org/pragmatics
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Figure 6 Emergence of two dialects of perfect camicators in an array of perceptrons
through partial training on successful neighbora gpatialized environment of wandering food
sources and predators.

The primary lesson of the work in communicatioth&t simple forms of signaling can
emerge on the basis of entirely individual gaireargd solely to environmental success, in
distributed networks of local interaction. If teesmple forms of communication count as
'semantics’, what this shows is that quite miniceaditions are sufficient for the emergence of
simple semantics.

IV. The Emergence of Pragmatics

Can the reach of this kind of modeling be extengeybnd semantics? In what follows
the same tools are applied to aspects of pragniatas attempt to understand the emergence of
the Gricean maxims.

Here as in the semantic case we wanted the infavmaur agents deal with to be real
information, rather than simply some arbitrarydis function. In line with the studies in
semantics, we wanted the pragmatics of communicébidoe contextually situated—realistically
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tied to individual success in the environment.erdd we return to a two-dimensional lattice, but
with an array of agents who have already fixed gigaaling system—an array of agents for
whom a system of communication is already in place.

The environment for these studies is not one afdeeng food sources and predators,
but it does have an essentially spatialized characthis environment, like that of the semantic
studies, is an environment of random events ofl Isigaificance. Here events come in three
colors, playing across the array—these are raimsasfna, perhaps, or threatening storms, or
clouds of locusts. The important thing for eadfividual is that it act appropriately with regard
to the environmental events around it. If an adieis itself in a magenta cloud (portrayed as a
shade of gray in Figure 7, but visible in colotte url for this chapter), it will gain points by
acting in an appropriately magenta way. It wiBégoints if it does not. If an agent finds itself
in a bright red cloud, it is red behavior that d&vantageous and failing to act in an appropriately
red way that will lose points. Color acting isfxy means free, however—one cannot hedge
one’s bets by always acting magenta, red, andwedlmultaneously. If an agent acts red when
there is no red cloud it loses points as well.

n
|
|
L]
u
n
| |
]

Figure 7 The environment of random events ofllsgmificance used in the pragmatics
studies.

If all agents could detect their own environmesgtaitingencies at all times, the model
would be much less interesting—everyone would dib. we our model, however, agentannot
always tell what is happening; only a random 10%hefagents on each round are able to detect
their current environment. The others, for thain, are blind.

Our assumption, however, is that a system of comeation is already in place. Our
agents already speak ‘red’, ‘yellow’, and ‘magenta’the following sense: They can give ‘red’,
‘vellow’, and ‘magenta’ signals heard by their inafiege neighbors. If an agent receives a ‘red’
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signal from a neighbor, he acts red; if he receavdragenta’ signal, he acts magenta, and so
forth. If you as an agent happen to be in the 1i@86can see your immediate environment on a
given round, then, you have all the information y@ed to do well. If you have a
communicating neighbor who is in that 10%, you dethe same benefit.

It is here that the Gricean maxims come in. Sappbat you as an agent have an
immediate neighbor who is among the 10% who camée’s happening. We’'ll call him
‘Seymour’. Because a system of communicationrsaaly in play between you and Seymour,
and because Seymour can see what's happeningrg@oiag to do fine. You are going to do
fine, that isas long as he’s following the appropriate pragmatiaxims:

You will have the information you need on the cdioti that Seymour observes
something like a maxim afuantity as long as he gives you enough information. Agyetart
out with a set probability of transferring importamformation—a probability, if they see 'red’,
of signaling red to their neighbors. We labeled pobability intervals 1 to 10, corresponding
to .1 intervals between 0 and 1.

You will have the information you need on the dtind that Seymour observes a maxim
of quality: as long as he is telling you the truth. Agemdstout with a probability interval
between 1 and 10 of sending a correct messageyifsttnd a message at all: a probability of
sending ‘red’ in a red environment rather than ‘srag’ or ‘yellow’, for example.

You will have the information you need on the dtind that Seymour observes a maxim
of relation: on the condition that he is giving you relevarfbrmation. | will detail the modeling
of relevance in a moment.

The general question at issue is whether pragrhatiavior in accord with Gricean
maxims will emerge in a communicative network o tkind. Here as in the semantic case, it
should be emphasized, the model works entirelgrims of (1) individual gains and losses—
gains from acting appropriately in one’s environtremd avoiding inappropriate action, and (2)
local action in the distributed network itself—tloeal action of sending and receiving signals
with immediate neighbors and of updating on theavar of successful neighbors.

In the pragmatic studies that follow, our behaaiapdating is simply by imitation. One
of the lessons from the semantic studies seems tioab it is patterns of mutual advantage in an
environment that are of importance, regardlesowf agents learn from their neighbors. We
expect much the same to hold in the case of pragsmaut more complicated mechanisms of
localized genetic algorithm and neural net trairang left to further work.

In the following sections communicative behavioaccord with each of the maxims is
developed successively; we then show that thesavimes can co-evolve as well.

1. Quantity

We begin with the pragmatics of quantity. What model gives us is an environment of
changing but spatialized events. On each roumthdom 10% of agents can detect those events.
All individuals in the array are primed with apprige signals—‘red’ for a red environment,
‘yellow’ for a yellow, and the like—but our agergtart with different probabilities of signaling
at all. Some transfer information whenever theyehh Some signal with only 60%
probability, or 10%, or never signal at all. Orleaound, all agents gain and lose points on an
individual basis. After 100 rounds, they look &®sf any neighbor has gained more points—
individual points gained on the basis of informatieceived of course. If so, they imitate the
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guantity probability irsendingof their most successful neighbor—the probabdityhat
neighbor signaling to others.

What happens if we start with an array of agentis rndomized 'quantities'? In Figure
8 we use the darkest shades to code those witkdkeprobability of signaling, using the
brightest shades to code those with the highe$igmibty (in the url, coding is done with darker
and lighter shades of blue). Over the coursefefvahundred generations the array comes to be
increasingly dominated by those following a Griceaaxim of quantity: by those with the
highest probability of signaling. Here signalinged not have to be free: the results hold even
with a cost for signaling. Figure 9 shows a grapha typical run.

Figure 8 The Emergence of Quantity. Agents wotlidr probabilities of signaling are coded in
darker shades. Evolution to pragmatic maxim ofhgtiaby imitation of successful neighbors
over 100 generations. Initial randomization andegations 5, 10, and 100 shown.
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Quantity = 10

Percentages of Population

Generations 200

Figure 9 The Emergence of Quantity. Percentafpspulation shown over 200 generations.
2. Quality

In order to run the model for quality we assurned tfuantity is already in place: all those
who detect a particular environmental conditiomalgt to their neighbors. They may or may
not signalaccurately however. Our agents come with a probability leetw1 and 10 of
accurate signaling, otherwise sending a decideatigrrect signal—'red’ instead of ‘yellow’, for
example, or ‘yellow’ instead of ‘magenta’.

We start with a randomization in terms of qualifjhose with the lowest quality are
coded with the darkest color; those with the higlaes coded with the brightest (Figure 10; in
the url, coding is done with darker and lighterddsof green). Over the course of 100
generations the array comes to be dominated by tdk following a Gricean maxim of
quality: The population converges on truth-tell(kggure 11).
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Figure 10 The Emergence of Quality. Agents Wother probabilities of accuracy in signaling
are coded in darker shades. Evolution to pragmmadgixim of quantity by imitation of successful
neighbors over 100 generations. Generations 1) &nd 90 shown.
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Quality = 10

Percentages of Population

Generations 100

Figure 11 The Emergence of Quality. Percentafipspulation shown over 100 generations.

3. Relevance

Information regarding environmental conditionsakevant, on this model, to those who
are actuallyn an event environment. Environments have fringesidver, and agents come with
a ‘degree of relevance’ in their reports (Figurg. 133ome agents signal precisely when an event
is happening in their immediate neighborhood. @theport when something is happening in a
slightly larger area, and which therefore has aeloprobability of actually occurring where they
are. Others report on a still wider area, offeiiimfigrmation that is still less relevant.

Figure 12 Relevance neighborhoods

Here we assume both quantity and quality to ljgane: reports are forthcoming from all
agents, truthful as to the character of the evepdnted, but of varying relevance. We start with
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an array randomized as to relevance, coloring thotbeleast relevance in darker shades, those
with most relevance in brighter shades (in thecading is done in shades of red). The result, as
shown in Figures 13 and 14, is convergence to ithfeet degree of relevance across the array.
The population fixates on maximized relevance.

Figure 13 The Emergence of Relevance. Agents lawer relevance in signaling are coded in
darker shades. Evolution to pragmatic maxim cfvahce by imitation of successful neighbors
over 100 generations. Generations 1, 5, 10 ancsho@n.
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Relation = 10

Percentages of Population

Generations 100

Figure 14 The Emergence of Relevance. Percestaigpopulation shown over 100
generations.

D. Co-Emergence of the Maxims

What if we combine all three of these pragmati@peeters? Here we start with an array
randomized for all pragmatic virtues: randomizeddoality, quantity, and relevance. Shadings
are combined: black or near-black indicates a coathin of poor pragmatic values, a light grey
indicates an individual virtuous in terms of ali¢lh pragmatic maxims. In the animation
accessible avww.pgrim.org/pragmatigsve have simply combined the blue, green, and red
codings of the pragmatic virtues above.

On each turn, each agent gains and loses poirdsting on the information he receives.
But of course the quality of that may informatioaywary—he mawyot receive important
information from a neighbor, he may receimeorrectinformation, or he may receiveelevant
information. At the end of 100 rounds, if a neighhas garnered more points from acting on
receivedinformation in the environment, each agent updategist one aspect of that neighbor’s
pragmatic character sendinginformation: He randomly adopts the neighbor’algu rating,
guantity rating, or relevance rating. That meafigourse, that he may update on the wrong
thing—the neighbor’s success may be due to songetitimer than the trait he imitates.

The fact that only one character will change daunk, and that they are all interacting,
makes the result significantly slower in this siatidn. Nonetheless, over 600 generations or so,
convergence is to the highest value in all prageraarameters (Figures 15 and 16).
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Figure 15 Co-Emergence of the Maxims together 608 generations. Quality, quantity and

relevance are coded from dark to light in threéedént shades.
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Figure 16 Co-Emergence Quantity, Quality, ancaiah over 600 generations.

In the models for pragmatics as in those for diggand cooperation, it should be
emphasized, it is local spatialized action thdahékey. In correlate work in evolutionary game
theory, using assumptions of global interactiorghidias Asher was able to produce pragmatic
conventions of sincerity only with very strong asgions regarding the immediate advantage to
a speaker of telling truth (Asher, Sher & Willia@2@02; private correspondence). In the
dynamics of localized action and imitation, on titleer hand, a full range of pragmatic
conventions emerge in terms of environmentallyificant events, assuming no immediate
advantage to the speaker, and despite signalirig.cos

Although simulations should never be treated alosive, they can be wonderfully
suggestive. What these results suggest is thdafuental phenomena of pragmatics emerge
spontaneously in communicative networks. Thosddumental phenomena don’t need to be
added, they don’t need to be cultivated, and tlwytdheed to be assumed. In any informational
network of a certain sort—one in which individuate striving merely for individual
informational advantage—behavior in accord withc&ain maxims of quality, quantity, and
relation will come for free.

E. Simulating Grice
These results seem to go some way in fulfillingt@rice himself wanted:

“...I'would like to be able to show that observant¢éhe Cooperative Principle and
maxims is reasonable (rational) along the followlings: that anyone who cares about
the goals that are central to conversation/comnatioic (such as giving and receiving
information, influencing and being influenced bhets) must be expected to have an
interest, given suitable circumstances, in paritgn in talk exchanges that will be
profitable only on the assumption that they aredcmted in general accordance with

the Cooperative Principle and the maxims. Whedingrsuch conclusion can be reached,
| am uncertain...” (Grice 1989, 28-29)

On the other hand, there are aspects of the siimngéh work that run directly counter to
Grice. Grice’s approach to meaning is heavilyntitsnal, and his work in pragmatics follows
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suit. Following Grice’s lead, a great deal of ga@odi solid work in pragmatics assumes highly
reflective and highly cognitive agents—agents cépabidentifying the limits of literal
meaning, capable of logical deduction, and capableiilding cognitive models of their
interlocutors.

What these simulations suggest is that somethimghreimpler and much less cognitive
may be going on far beneath that level. The agarttese simulations are too simple to form or
recognize intentions. They have no explicit cafgegifor logical inference, and are far too
simple to build cognitive models of their interldéarts. Despite that, something develops in
networks of those simple agents that looks a ket signaling. Behaviors develop in networks of
those simple agents that also seem to be in agdgtidhe Gricean maxims.

With more complicated agents, of course, theseesimamics may play out in more
complicated forms involving intentions, logical@nénce, and cognitive modeling. But what the
simulations suggest is that cognitive complexityhaft sort isn’t strictly necessary: information
maximization in communication networks producesdtamental phenomena of pragmatics even
with far simpler cognitive agents.

These results also offer some suggestions regatidenconceptual categories in play.
Grice followed Kant in speaking of ‘maxims’. Buietterm ‘maxims’ itself may suggest too
high a cognitive level. Grice also followed Kantdividing his maxims into quantity, quality,
relation and manner, but even Grice himself seaimeeicognize the artificiality of these
categories. There are undoubtedly important distins to be drawn between forms of
linguistic convention, but the lines should perhapsbe drawn where Grice drew them. In
terms of dynamics within information systems, etl@ndistinction between semantics and
pragmatics may not be as hard and fast as it hmastsnes been assumed to be.

The background work summarized in sections | dicdricerns the emergence of
signaling systems, read as semantic. The newes audlined above assumes a semantic system
in place, and reads further results as an emergdrmagmatics. What if we combined the
simulations; what if we did the two together? \Waén't yet done that work, but my prediction
is that the results will be much the same. My mtésh is that information maximization will
emergebothin terms of coordinated use of signals and in ratgcs of appropriate, relevant,
and accurate signaling.

Would that be the emergence of two things simeltaisly—semantics and pragmatics?
One could look at it that way. But | also thinlatlone could take the result as an indication that
there is a single core phenomenon at issue, ofwdamantics and pragmatics are somewhat
artificially separated ‘aspects’. The core phenoome and the engine that drives both, is
environmental information maximization in communioa networks.

V. Pragmatic Implicature and Inference

What the simulational results offer so far is theeegence of something like Gricean
pragmatic conventions. Assuming a semantics atlsagnals, the dynamics of local
interaction, self-advantage, and imitation of sgsf@ neighbors is sufficient to produce
conventions of quality, quantity, and relevanceit Bere is something important that this does
not yet give us. It does not yet give us Gricadarence on the part of the hearer—reliance on
conventions in play in order to draw particularirgnces beyond what is said. It also does not
yet give us Gricean implicature on the part ofgheaker—the use of conventions in play in
order to encourage particular inferences beyond wheaid. Can the modeling techniques
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outlined here take us that next step? The anspyeraas to be ‘Yes and No,’ but an interesting
‘Yes and No'.

The reason for the ‘No’ answer is that most Gricederences and implicatures are
characterizedn highly cognitive terms. Some of Grice's exaespteem to depend crucially on
cognitive modeling of the other agent—an aspetithlygemphasized by Asher and his
collaborators (Asher, Sher, & Williams 2002; AsBetascarides 2003). Some of the examples
depend on an agent’s explicit recognition of thats of literal meaning, or of conventions as
conventions, or explicit recognition of patterndagical entailment. Can the simulation
techniques above be used to model those? No, $eeaiare working with agents at far too
low a cognitive level. In order to extend netwbekhniques to most cases of Gricean inference
and implicature we would need networks of more dempgents.

Gricean inference and implicatures are a mixed bagever, and there are some
phenomena in at least the general areadtnahow up even in simulations of agents this simple.
One of those phenomena is a close relative of scdéxrence and implicature—the inference
and implicature from ‘some students came to th&ypr ‘not all came’, for example, or ‘there
are five apples in the basket’ to ‘there aren’'tesev

What is at issue in such cases is a particulat &frcoordination between speaker and
hearer. The speaker’s ‘five applies’ implies ‘nwdre.” He doesn't say ‘there are five apples in
the basket’ when there are ten, even though usthat there are five apples in the basket when
there are ten. The hearer, on the other end afdbedination, hears ‘five apples’ and infers ‘and
not more’. In simplest terms, the speaker doasseta scalar lower than the highest justified.
He doesn’t say ‘three apples’ when there are fimeexample. The hearer, on his side, doesn’t
think ‘he said five apples, so there might be tée;'doesn’t act on a scalar higktean that
conveyed.

Whether or not it fully qualifies as implicatutéjs kind of coordination between speaker
and hearecanemerge even with agents as simple as those used Tieat is the ‘Yes’ of the
‘yes and no’. This aspect of scalar implicaturenss to be simpler than many of the things in
the Gricean mixed bag; interestingly, it was alsala implicature that Gerhard Jager explored
using the very different (and non-spatialized) thesponse’ dynamic (Jager 2007).

A further simulation shows the co-emergence ofdimated speaker and hearer behavior
along the lines of scalar implicature. The envin@mt is again one of randomized spatialized
events, but the events differ in severity: theeestorms of grades 1, 2, 3, and 4, for example. If
you as an agent are prepared for a storm of grageu?are prepared for a storm of either grade
1 or 2, but you are still open to damage if hithaat3 or 4. If you are prepared for a storm grade
3 and you only get hit with a 1, on the other hgmay have wasted precious resources—the
effort expended in needless preparation for leRelad 3 (Figure 17).
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Fig. 17 Spatialized events of scalar ordered severitynstayf severity 1, 2, 3, and 4,
for example.

The ideal in such an environment is to act in § pr@cisely appropriate to the storm: to
act 1 and 2 in a 2 environment; 1, 2 and 3 in a@renment. In this simulation you as an agent
get a positive point for every degree you are abrabout—a positive point for both 1 and 2 if
you act ‘2’ in a two environment, for example. Yget a negative point for every degree you
are wrong about—a negative point for acting 3 & $torm is only a 2, for example. If the storm
is a4 and you only act 1, you get a positive pfontour ‘1’ but negative points for the 2, 3, and
4 that you missed. Here as before, only 10% ofptimulation on any round can directly observe
the relevant environment—hence the need for comecation.

In modeling the emergence of pragmatic conventisesstarted with an established
semantics for red, magenta, and the like. Indizisiwho heard ‘red’ automatically acted red.
Here we start with an established scalar semaritigsu hear ‘2’ you act both 2 and 1. If you
hear 3 you will act 3, 2, and 1. We also starhweistablished pragmatic conventions of the
forms evolved above. Speakers who observe a sthvays send a signal, they send a signal
regarding the immediate environment, and—most it@odrfor our purposes—they never send a
signal that isn’t true.

Those specifications still leave something impatrtpen—something about scalars. Our
agents are both speakers and hearers. As spélakgrsever speak anything but the truth, but
we start with an initial population in which speedamaysay something that is true but does not
convey the full scalar height. Storms of degreeetalso storms of degree 3, 2, and 1. As
speakers, therefore, our agents start with a pitityahterval between 1 and 10 of giving a
signal less than the full observed scalar. Asdrsapur agents always act 1 and 2 on hearing the
signal ‘2’. But they may also act on a scalar kigtiman that heard: they may act not only 1 and
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2 but 3, for example. As hearers, our agents sii#iita probability interval between 1 and 10 of
acting not only on what they hear but on a scalgndr than that they hear.

In our initial array of randomized probabilitigben, a scalar signal does not necessarily
indicate that the truth isn’t higher. A heard scaloesn’t entail that you shouldn’t act higher.
There is as yet no scalar coordination betweenkgpeand hearers. Indeed even within each
agent there need be no coordination between spgehbkimavior and hearing behavior. We start
with a situation in which the coordination charaistiec of scalar implicature and inference
doesn't yet exist.

Our agents code speaker probability in one calales(blue, in the color version at the
url for this chapter), with lighter shades indiogtia lower probability of signaling below the
observed scalar. Agents’ hearer probabilitiescacked in another color scale (green), with
lighter shades indicating a lower probability ofiag above the scalar message received. As
before, all gains are purely individual. After 1@unds of gains and losses, individuals see if
any neighbor has done better in terms of overealies If so, they imitate just one of that
agent’s features, at random: that agent’s proltglmfigiving a scalar less than the observed
reality, or that agent’s probability of acting os@alar higher than that heard.

Figures 18 and 19 show the evolution of the ardaysuch an environment, speakers
couldroutinely understate the severity of observed storidearersould routinely act above a
signal that was likely to be low, following a geakstrategy of over-reacting to assumed under-
statement. But that is not the direction in whigis kind of array evolves. It evolves
systematically to a coordination between speakaishaarers in which speakers have the lowest
probability of sending a signal less than the olesgscalar height, and in which hearers have the
lowest probability of acting as if what they heangyht be less than the full scalar height.
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Figure 18 Emergence of scalar coordination betvepeakers and hearers over 200
generations. Speaker's tendency to understa@saeglin darker green, hearer's tendency to act
on higher scalar than announced is in darker lgobined here as darker gray. Generations 2,
11, 50 and 200 shown.

Figure 19 Emergence of scalar coordination betvepeakers and hearers over 350 generations.

As indicated above, it is unclear whether thislifjea as Gricean implicature in the full
sense. It does show, however, that extremely simpeakers and hearers in information
networks can develop precisely the communicativedioation that is characteristic of scalar
implicature and inference. It is interesting taeydy the way, that speakers and hearers do not
converge to this coordination at the same ratés ttie hearers who converge first, learning not
to over-react. In large part because of the dyoami payoffs, speakers are significantly slower
in learning not to under-state.

VI. Conclusion
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What simulations suggest is thmaximization in spatialized information networksege
networks of very simple agents, is sufficient togurce aspects of semantics, of pragmatics, and
even coordinated communication behaviors suggesfigealar implicature and inference.
Some of the core phenomena at issue in semantaggn@atics, and implicature appear in the
fundamental dynamics of information maximizatioveme for agents far below the cognitive
level of those that appear in Grice.

Even if this captures some of the core phenomeisse in pragmatics, it cannot be said
to capture it all. There are things in the mixed lof Gricean pragmatics that seentiémnanca
higher cognitive level—the level of agents that eaplicitly recognize logical inferences, that
can explicitly reflect on conventions as convensioor that can cognitively model other agents.
Those things will not appear in networks of agéhis simple

Those other aspects might appear, however, wstméar dynamics, in spatialized
networks of more complex agents. All of the pheanaillustrated here operate in terms of
individual information maximization across spatielil arrays of communicative agents. Itis to
be expected, | think, that information maximizatafrthat kind will useall the tools available to
it. Information maximization in arrays of simplgemts exploits the full cognitive abilities of
those agents, even where—as here—those cognitiNteealare severely limited. Information
maximization in arrays of more complex agents hél’e a wider range of cognitive abilities to
exploit, and it is predictable that it will do so.

The next step along these lines would thereforarbexploration of the dynamics of
maximization in information networks involving mocemplex agents. That could tell us
whether a similar dynamics in the context of mamplex agents might be sufficient for further
aspects of pragmatics. If particular aspectsmjuage use will appear in networks of agents
only where those agents have particular cognitbiktias, such a research trajectory would also
give us a new typology and a new understandingfférdnt communicative phenomena: an
understanding in terms of the level of networkedritive abilities that different communicative
phenomena require.
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Notes

! My research collaborators in this work includegPéudlow, Dustin Locke, and Aaron
Bramson at the University of Michigan and Brian &ngbn at Stony Brook.

% This first example employs synchronous updatiBigch of our agents simultaneously
calculates whether any neighbor has done bettso, ufpdating to the strategy of the most
successful neighbor. Results are much the samesviaw, if we randomly update only a small
proportion of cells at each turn. See Grim, Wahdand Beltrani 2006.

3 Although spatialized lattices of this form are mgin tool throughout, it is clear that a study of
the dynamics of interaction across the entire rarigmssible network structures is needed.
With regard to cooperation in particular, it tus that the results outlined here generalize
nicely across network structures. See Grim 20R9@9b.

* Here again the ultimate goal would be an undedsitey of communication across various
networks.

> Accessible but technically complete introductida neural nets are unfortunately difficult to
find. Perhaps the best is Fausett, 1994. We atefgt to Laurene Fausett for personal
correspondence regarding construction of the model.

® A 'two-lobe’ structure for signaling, it turns phas been invented or reinvented numerous
times in the literature. See de Saussure 1916 dtawan 1991; Oliphant & Batali 1997,
Cangelosi & Parisi 1998; Nowak, Plotkin & Krakau#®99; Nowak, Plotkin, and Jansen 2000.
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’ In a second series of studies we used more comglesal nets, capable of handling the full
range of Booleans, with partial training by backagation. The results are just as strong. See
Grim, St. Denis, Kokalis, 2002 and Grim, KokalidaATafti, Kilb & St. Denis, 2004.



