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ABSTRACT

In medicine and the social sciences, researchers must frequently integrate the findings of

many observational studies, which measure overlapping collections of variables. For

instance, learning how to prevent obesity requires combining studies that investigate

obesity and diet with others that investigate obesity and exercise. Recently developed

causal discovery algorithms provide techniques for integrating many studies, but little is

known about what can be learned from such algorithms. This article argues that there are

causal facts that one could learn by conducting a large study but which could not be

learned by combining many smaller studies. Moreover, I characterize the frequency with

which combining many studies increases underdetermination and exactly how much

information is lost.
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1 Introduction

Since its inception, the Journal of the American Medical Association has pub-

lished more than 270,000 articles concerning the causes of heart disease. The

enormous number of articles is, in part, a consequence of the enormous

number of factors—diet, exercise, prescription drug use, and many others—

that are potentially relevant to cardiovascular health. No single study or

randomized controlled trial (RCT) could measure all the variables relevant

to heart disease. Thus, heart disease must be investigated through a series of

smaller studies or RCTs (for example, one examining heart disease and obes-

ity, another investigating heart disease and smoking, and so on). I refer to this
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practice of combining many small studies or RCTs as ‘the piecemeal construc-

tion of causal theories’. The piecemeal construction of causal theories raises a

crucial question: how can so many observational studies and RCTs, each

measuring a different set of variables, be integrated into a single causal

theory concerning all variables under investigation?

Using techniques from automated causal discovery, Danks ([2002]),

Tillman, Danks, and Glymour ([2008]), Eberhardt, Hoyer, and Scheines

([2010]), and Tillman and Spirtes ([2011]) develop algorithms that provide

an answer to this crucial question. Given a collection of data sets containing

measurements of differing (but often overlapping) sets of variables, these al-

gorithms output all causal hypotheses that are consistent with the data. Yet

little is known about what can, in principle, be learned from such algorithms.

For instance, are there any causal facts that one could learn by conducting a

large study, but which could not be learned by combining many smaller stu-

dies? If so, what type of causal information is lost in the piecemeal construc-

tion of causal theories? How often is such information lost? The purpose of

this article is to provide preliminary answers to these questions.

The structure of this article is as follows. In the first section, I state and

explain two principles, called the Causal Markov condition (CMC) and the

Causal Faithfulness condition (CFC), respectively, that are frequently used in

automated causal discovery algorithms. In particular, both principles are

assumed in all of the existing algorithms for the piecemeal construction of

causal theories.

Although both principles are controversial,1 I assume both without argu-

ment. Because my goal is to investigate what can be learned from the piece-

meal construction of causal theories, I must make some assumptions

concerning how causal hypotheses are inferred from statistical data. As the

CMC and CFC are used widely, both in causal discovery and (often implicitly)

in the sciences, it is important to characterize what can be learned via piece-

meal methods when the two principles are assumed. Future work ought to

characterize what can be learned from the piecemeal construction of causal

theories under weaker or entirely different assumptions; some alternative prin-

ciples are discussed in the final section of the article.

In the second section, I argue that the piecemeal construction of causal

theories can create a problem of piecemeal induction.2 The problem is as

follows: for any collection of variables, there are distinct causal theories, T1

1 For defenses of the CMC, see Hausman and Woodward ([2002, 2004]) and Steel ([2005]); for

criticisms, see Cartwright ([2002, 2007]). For criticisms of CFC, see Freedman and Humphreys

([1999]) and Cartwright ([2007]). The case study involving birth control and thrombosis, cited as

a counter example to CFC, is discussed in Hesslow ([1976]) and Cartwright ([1989]). Both the

CMC and CFC are defended in Spirtes et al. ([2000]).
2 The problem was first discussed in Mayo-Wilson ([2011]).
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and T2, that can be distinguished by observational data if and only if all

variables are simultaneously measured. That is, for any collection of variables

under investigation, measuring only subsets of the collection (no matter how

many) can fail to reveal the full causal structure. I discuss the problem of

piecemeal induction as it pertains to causal inference from observational

data, but it is easy to see that analogous epistemological problems arise in

inference from experimental data (for example, like that obtained in RCTs).

Section 3 addresses three important questions that are raised by the prob-

lem of piecemeal induction. First, what type of information is lost in the

piecemeal construction of causal theories, and how much is lost? Second,

how often does the problem arise? That is, what types of causal structures

require scientists to conduct large observational studies, and how frequently

do researchers confront said structures? Third, when, if ever, is no information

lost in integrating many observational studies? I state and explain six new

theorems that provide partial answers to each of the three questions.3 I con-

clude with a description of open problems that are important for piecemeal

causal discovery.

Although this article focuses on causal inference from many observational

studies (in medicine and the social sciences, in particular), the six new the-

orems ought to be seen as part of a larger project investigating the frequency,

extent, and character of underdetermination of theories in science more gen-

erally. The theorems show that, in causal inference, underdetermination is

sometimes severe, in the sense that the theories underdetermined by evidence

differ greatly and in important ways (see Theorems 6 and 7). In other circum-

stances, causal theories are not underdetermined in any significant sense

(Theorem 5), if at all (Theorem 1). In domains in which the variables under

investigation bear numerous intricate relationships to one another, under-

determination will be frequent (Theorem 9), but in other domains, scientists

might never encounter underdetermination (Theorem 8). In short, sweeping

arguments about the presence or absence of underdetermination in science

need to be reconsidered.4

3 Proofs of all theorems are available in Appendix B.
4 Here, I am thinking of arguments that purport to show that any scientific theory has empirically

equivalent rivals (for example, see van Fraassen [1980]), or which attempt to categorically deny

this claim (for example, Laudan and Leplin [1991]). Of course, this article discusses underdeter-

mination in a context in which all alternative theories can be precisely enumerated, in which all

possible future data/evidence can be precisely described, and when the relationship between said

theories and evidence is mathematically determined. Anti-realists might plausibly argue that

underdetermination is rampant in domains in which there are ‘unconceived alternatives’

(Stanford [2006]); but, of course, there are plenty of cases in science in which the set of possible

statistical models/theories is well-specified.
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2 Causal Inference from Observational Data

The central problem for causal inference, made famous by Hume, is that

causation is unobservable.5 For example, one does not observe the event

‘overeating causing obesity’. Rather, one observes two distinct events—

eating at some time, t0, and weight gain at some later time, t1—and infers

some connection between the two. As there is no observable ‘causal event’,

causal relationships must be inferred from probabilistic/statistical regularities

between types of events, like overeating and weight gain.

However, not every statistical regularity indicates a causal relationship.

Arm length and height, for instance, are clearly correlated, and yet neither

is a cause of the other (as otherwise, one could get taller by stretching the arms

or vice versa). Rather, the two quantities are correlated because they share

several common (genetic and environmental) causes. So the central problem

for causal inference reduces to another: characterize the types of correlations

or probabilistic regularities that arise from genuinely causal relationships, and

characterize those that arise from ‘spurious’ factors, like chance or unmeas-

ured common causes. Such a characterization would be useful even if there

were ‘observable’ causal events, as then one could still infer causal facts in the

presence of unmeasured, confounding variables.

In a variety of scientific disciplines, two principles are often assumed to

axiomatize (at least in part) the relationship between probability and caus-

ation, and hence they have been used extensively in drawing causal conclu-

sions from probabilistic data.

CMC: Any variable is conditionally independent of its non-effects, given its

direct causes.

CFC: No two variables are conditionally independent unless so entailed by

the CMC.

Here, ‘conditional independence’ refers to the standard probabilistic notion

of independence. Informally, two events, A and B, are conditionally independ-

ent given C, if, from a predictive standpoint, C’s occurrence renders B irrele-

vant in predicting whether A will occur.6 For example, the event A, ‘having

blonde hair’, is unconditionally dependent on B, ‘having blue eyes’, as one

could more accurately predict an individual’s eye color if one were given his

5 Recent work in the psychology of ‘causal perception’ suggests that Hume’s claim might need to

be modified, as there might be a sense in which humans actually ‘perceive’ causation between

two objects that interact locally. Because not all causal relationships involve the interaction

between spatio-temporally contiguous objects (for example, money supply increases inflation), I

assume that there are important causal relations (especially in medicine and the social sciences)

that cannot be learned by direct observation alone.
6 Formally, two events, A and B, are said to be conditionally independent given C just in case

PðA&BjCÞ ¼ PðAjCÞ � PðBjCÞ.
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hair color (because, for example, blue eyes are more common among individ-

uals with blonde hair). However, these two events are conditionally independ-

ent, given a third event C, namely, having the recessive gene pair necessary for

blue eyes. Why? Knowing that an individual has blonde hair is irrelevant to

predicting his eye color if one already knows the individual has the genes

responsible for blue eyes.

The CMC and CFC assert that conditional independence and causation are

intimately connected. To see why, let’s consider an example. Suppose that

work ethic and intelligence are causes both of one’s performance on standar-

dized tests and also of one’s high school grades. These causal relationships can

be represented in a directed graph like the one in Figure 1, where an arrow of

the form v! v0 indicates that v directly causes v0. In general, given a set of

variables, V, define a causal theory to be a directed graph with nodes from V.

Of course, the causal theories of interest to scientists and policy-makers are

more detailed than directed graphs, as graphs only indicate which variables

cause which others. ‘Real’ causal theories, for example, also tell one how

strong the causal connection is between two variables (for example, how

many hours, on average, one needs to study in order to earn an ‘A’ average).

However, I will focus exclusively on learning causal graphs from data for two

reasons. First, discovering which variables cause which others is a necessary

first step in constructing causal theories. Second, there are additional difficul-

ties with estimating the strength of a causal connection even once the graph

has been correctly identified.

Returning to our example, because work ethic and intelligence are common

causes of both test scores and grades, students with higher standardized test

scores will typically also have better grades in high school (i.e. grades and test

scores are positively correlated). So grades and test scores are dependent even

though neither is a cause of the other. From a predictive standpoint, if one

were asked to predict Mary’s GPA, then it would be helpful to know Mary’s

SAT score, as the two are (however crudely) correlated.

However, knowing Mary’s test scores is irrelevant to predicting her grades if

one already knows that Mary is intelligent and works diligently. Why?

Intuitively, the reason that standardized test scores might aid one in predicting

a student’s grades is that test scores are (albeit crude) indicators of the stu-

dent’s intelligence and work ethic, which are in turn indicators of the student’s

grades (because they are causes!). So if one already knows the student is

Figure 1. An example causal theory in which test scores are conditionally inde-

pendent of grades given intelligence and work ethic.
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intelligent and works diligently, then learning her SAT score will provide no

new information about her grades.

In other words, the variable ‘standardized test scores’ is independent of its

non-effect ‘grades’, given its direct causes, ‘intelligence’ and ‘work ethic’. This

is just an instance of the CMC. The CMC, therefore, captures the important

intuition that two variables might be correlated, and yet, they are ‘screened

off’ from one another when one conditions on all common causes.7 The CMC

also captures the intuition that indirect causes are screened off by more prox-

imate ones, but space prevents a detailed discussion of this issue.

In general, the CMC says that if two variables are not causally related (i.e.

neither is a cause of the other, nor do they share a common cause), then they

are independent. The CFC essentially says the converse: informally, it says if

two variables are causally related, then they are also dependent. For example,

if a large study finds no correlation between the development of heart disease

and smoking, then, in the absence of other information, one should conclude

that there is no causal connection between the two variables.

One might be wary of drawing causal conclusions so quickly from the CMC

and CFC, especially in scenarios like those involving social policy and medical

recommendations concerning heart disease. In medicine and the social sci-

ences, even the verdicts of ‘large’ studies are often overturned by later, more

comprehensive studies. Such a worry is legitimate, but it conflates (i) the error

due to inherent uncertainty and ‘noise’ in empirical data with (ii) a suspicion

about the validity of the CMC and CFC. Just as deductive rules of inference—

modus ponens, reductio ad absurdum, and the like—may yield false conclusions

from false premises, the CMC and CFC will also fail to yield reliable causal

conclusions unless one correctly identifies which variables are truly associated.

And correctly identifying such associations is non-trivial.

For example, suppose two variables are directly causally connected, but

they are only very weakly correlated. In a small study with limited data, re-

searchers might fail to detect the weak correlation. Such a scenario is not

uncommon in medicine (for example, when a drug increases survival rates

by only a fraction of a percent) or in the social sciences. In this case, using

the CFC as a rule of inference will lead one to erroneously conclude that the

two variables are not directly causally connected. Analogous remarks apply to

the use of the CMC.

The possibility of misidentifying which variables are associated, however,

should not lead one to reject the CMC and CFC; any principles for inferring

causal conclusions from associations will be subject to the same problem.

7 Here one must be careful. Assuming the CMC and CFC, two variables might still be condi-

tionally dependent, given all direct common causes because of the existence of ‘M’ structures.

See (Pearl [2000], p. 186). The idea of ‘screening off’ goes back at least to Reichenbach ([1956]),

and understood in this way, the CMC is a generalization of Reichenbach’s condition.
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To reject the CMC and CFC for this reason would require rejecting the en-

terprise of causal inference from noisy, non-experimental data. For the re-

mainder of the article, therefore, I will focus on what can be learned from

CMC and CFC under the assumption that the probabilistic relations (i.e.

conditional independencies) among all variables have been correctly

identified.

Given the CMC and CFC, one can define two causal theories/graphs to be

independence indistinguishable (or I-indistinguishable for short), if they imply

that the same conditional independencies for a set of variables.8 Intuitively,

two causal theories are I-indistinguishable if no amount of observational data

could allow one to conclude which theory is correct, unless one used

domain-specific knowledge.9 For example, let’s first consider a three-variable

example like the one above. Suppose the true causal relationships among

intelligence, standardized test scores, and grades is as depicted in Figure 2.

It turns out there are two other theories that are I-indistinguishable from the

true one, which are depicted in Figure 3.

In this example, it seems implausible to assert that either standardized test

scores or grades are a cause of intelligence. So domain-specific knowledge

helps rule out alternatives that conditional independence facts cannot. Such

domain-specific knowledge, however, may not be available in other areas of

Figure 2. An example causal theory.

8 I-indistinguishability is typically called ‘Markov equivalence’ in the causal discovery literature. I

use a different term here for two reasons. First, I wish to explain why the relation is epistemo-

logically important. The term ‘I-indistinguishable’ does this, as it suggests that two

I-indistinguishable graphs cannot be distinguished (in some important way) from data.

Second, the term explains in what way graphs are indistinguishable, namely, that use of condi-

tional independence information alone is insufficient to distinguish the graphs. This suggests the

possibility (or rather, the fact) that other types of information might be used to distinguish

I-indistguishable theories.
9 ‘Domain-specific knowledge’ comes in at least three forms. The first is timing. For example,

because developing a smoking habit typically precedes developing lung cancer, it is likely that

having lung cancer does not cause one to smoke. Together with the CMC and CFC, the as-

sumption of ‘no backwards causation’ allows one to discover the true causal graph, given the

timing of the variables and enough data (See Corollary 3 in Pearl [1988]). Second, researchers

often know particular mechanisms by which certain causal effects might be mediated. For

example, it is known that smoking produces tar buildup in the lungs, which is one possible

source of lung cancer. In contrast, it would be difficult to postulate a mechanism by which lung

cancer causes one to smoke. So knowledge of possible mechanisms can constrain which causal

theories are plausible, given data and such knowledge can be incorporated into well-known

causal discovery procedures (see Spirtes et al. [2000], p. 93). Third, parametric assumptions (for

example, that the variables are normally distributed) can be used to distinguish otherwise

I-indistinguishable theories (Geiger and Heckerman [1994]), and similarly for assuming that

the underlying probability distribution belongs to a special class of non-parametric distributions

(for example, linear, non-Gaussian, see Shimizu et al. [2006]).
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science and, thus, it is important to characterize what can be learned in the

absence of such knowledge. Surprisingly, even with no background knowledge

whatsoever, the CMC and CFC sometimes entail that there is a unique causal

structure compatible with the data. For example, there is no distinct causal

theory that is I-indistinguishable from the theory concerning the four vari-

ables (intelligence, work ethic, grades, and test scores) depicted in Figure 1. If

the theory in Figure 1 were true, assuming the CMC and CFC, the conditional

independences among the variables would be sufficient to discover the truth.

How often is there a unique causal theory compatible with one’s data? Of

course, the answer depends on the scientific domain and type of causal system

under investigation. However, if one assumes that all causal graphs are equally

likely, then as the number of variables under investigation increases indefin-

itely, one in fourteen theories will be uniquely determined by probabilistic

relations alone (Steinsky [2004]).

Formally, let n be a positive whole number, and suppose one is interested in

the causal relationships among n many variables. Suppose one repeatedly

guesses a causal theory at random (say, by picking pictures of causal graphs

from a hat). The one can ask, ‘what proportion, pn, of the randomly guessed

causal theories over n variables are I-indistinguishable from themselves only?’

The answer:

Theorem 1 (Steinsky [2004]):

pn approaches (about) 1
14

as n approaches infinity.10

This is good news, but it’s only the tip of the iceberg. Steinsky’s theorem

asserts that some causal theories will be uniquely compatible with the data

(given a sufficiently large sample). But even when the data undeterdetermines

the truth, Pearl and Verma ([1991]) prove that the CMC and CFC entail that

all theories compatible with the data will share important features. Two

Figure 3. Two I-indistinguishable graphs from that in Figure 2.

10 In Bayesian terms, Steinsky’s theorem asserts that, with respect to a uniform prior distribution

over all causal graphs with n many variables, the probability that the true, unknown graph is

uniquely determined by conditional independence facts is about 1
14

. Another reasonable

Bayesian prior might assign equal probability to every equivalence class of I-indistinguishable

theories (i.e. the prior is uniform over Markov equivalence classes). Although a proof is un-

available, large computer simulations in Gillespie and Perlman ([2001]) suggest that about one in

four I-indistinguishable classes contain only one member and that, furthermore, the average size

of I-indistinguishable classes (with respect to said prior) is approximately 3.73.
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definitions are necessary to understand Pearl and Verma’s theorem. First, say

X and Y are adjacent in a causal graph if either X directly causes Y or vice

versa. Second, suppose X and Y both directly cause Z, but that neither X nor

Y causes the other. Then say that the triple X, Y, and Z forms a vee, as the

three variables can be arranged in a V-shape (i.e. X ! Y  Z). Pearl and

Verma’s theorem asserts that

Theorem 2 (Pearl and Verma [1991]):

Assuming the CMC and CFC, two causal graphs are I-indistinguishable if and

only if they have the same adjacencies and vees.

Pearl and Verma’s theorem is important because, in a wide variety of cir-

cumstances, it allows one to infer significant causal knowledge from observa-

tional data alone. For example, suppose that T1 and T2 are I-indistinguishable

and that T1 entails that X and Y are adjacent, which, recall, means one is a

direct cause of the other. Then, according to Pearl and Verma’s theorem, T2

also entails that X and Y are adjacent. Similarly, if T1 and T2 disagree

about whether X and Y are adjacent, then they are not I-indistinguishable.

Thus, given enough data, Pearl and Verma’s theorem allows one to infer

which variables are directly causally connected (under assumption of the

CMC and CFC of course). Why? In the large sample limit, the only theories

that will be compatible with the data will also be I-indistinguishable from the

true causal graph, and hence they will entail the same adjacencies.

Applying Pearl and Verma’s theorem in practice, however, requires that

all variables are, what I will call, co-measured. To explain the concept

and its relevance to Verma and Pearl’s theorem, I will need to introduce one

additional term. Thus far, I have described the causal relationships among

variables, like weight, daily caloric intake, and so on. For my purposes, one

can think of a variable as reporting a property of a ‘unit’. In medicine, the unit

is almost always an individual human being, and a variable (for example,

weight or daily caloric intake) reports a property of that human being.

In the social sciences, units are also often individual human beings, and

variables (for example, standardized test scores) often report properties just

like in medicine. That is not always the case. For example, economists might

be interested in the relationship between business investment and taxes at two

different times. In such cases, the appropriate unit is a collection of individuals

(or perhaps an economy) at a fixed time, and the variables report properties of

those individuals (for example, how much the individuals were taxed at time t1

and how much they invested in businesses at time t2).

I will say that a collection V of variables is co-measured in a study when the

‘reports’ of every variable in V are available for every unit in the study. For

example, if V is the set of variables consisting of intelligence, standardized test

scores, work ethic, and grades, then V is co-measured in a study if one has
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data concerning the intelligence, standardized test scores, and so on of every

person considered in the study.11

Why does applying Pearl and Verma’s theorem require co-measurement of

all variables? To apply the theorem, one must be able to rule out causal

theories that are I-distinguishable (given sufficient data) from the true one.

That’s harder than it sounds. If two theories are I-distinguishable, then there is

some assertion of the form ‘v is independent of v0, given variable set S’ that is

entailed by one theory and not the other. Learning such an assertion, in gen-

eral, requires co-measurement of v, v0, and S. For example, I considered a

causal theory in which standardized test scores (v) is independent of

grades (v0), given both intelligence and work ethic (so S is the set {intelligence,

work ethic}). To learn this independence, a researcher would need to compare

test scores and grades among study participants of similar intelligence and

work ethic. Without fixing these two other variables, a researcher would

detect a correlation between test scores and grades, as they are (by assump-

tion) effects of intelligence and work ethic. To compare two variables, while

holding the two others fixed, however, requires that all four variables are

co-measured.

Now, in the aforementioned example, the set S contains only two variables.

This need not be the case in general. If the set S contains sufficiently many

variables, it may be impossible—for experimental, practical, or ethical rea-

sons—to co-measure all of S in one study. In general, there are three primary

reasons why variables might not be co-measured.

The first is cost. In medicine, variables might report the outcomes of labara-

tory tests, x-rays, fMRI scans, and so on. Such tests are expensive and, hence,

it is rare that patients/study-participants are subjected to all of them. Similar

remarks apply in the social sciences. For instance, gross domestic product,

which measures the total value of goods exchanged in a country over a spe-

cified time (often a fiscal quarter or year), incorporates citizens’ wages, cor-

porate profits, government spending, and several other factors. To calculate

11 Although the definition of co-measurement seems strict, when I say a set of variables has not

been co-measured, I will actually mean something stronger than what is required by the defin-

ition. For example, suppose one conducts a ‘single’ study in which the height, weight, and age of

a thousand participants is recorded. Suppose, unfortunately, the data file is corrupted, and the

last participant’s weight is no longer available; all other data remain unchanged. Then, accord-

ing to the strict definition of co-measurement, the three variables are not co-measured in the

data set in question. However, one could treat the data set as being the result of two studies, one

with 999 participants, and one with a single participant. In the former ‘study’, the three variables

are co-measured, and in the second they are not. Although it may seem odd to say one’s data

came from ‘two’ studies, there is nothing wrong with treating the data like this from a technical

standpoint. Hence, when I say a set of variables, V, is not co-measured in any study, I will

typically mean that the data points containing reports of all members of V is sufficiently sparse,

even if it’s non-empty and is co-measured (in the strict sense) under some division of the avail-

able data into ‘studies’. I retain the strict definition because it is precise (as it does not contain the

vague term ‘sufficiently sparse’) and provides one with the ability to describe the more import-

ant, but less precise, meaning of co-measurement.
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gross domestic product, therefore, an economist needs data collected from

millions of individuals, businesses, and govermental agencies. In sum, measur-

ing a single variable can be costly, and so financial constraints often prevent

co-measurement of many variables.

The second is lack of expertise or resources. Even with sufficient funding,

social scientists might need an expert in survey-design to craft questionnaires;

medical researchers might need many competent doctors to administer med-

ical tests, and so on. Thus, measurement of some variable is rarely routine

labaratory work; it often requires significant training and access to particular

types of equipment. Lack of expertise or resources, therefore, can prevent

co-measurement of variables even when sufficient funding is available.

The third obstacle to co-measurement is privacy. Recent work in machine

learning shows that an American citizen’s social security number can be pre-

dicted with approximately 87% accuracy using the person’s date of birth, sex,

and hometown alone (Sweeney [1997]). The upshot is that no superset of these

three variables can be co-measured without, for all intents and purposes,

sacrificing the anonymity of the individuals in a study. For instance, suppose

a researcher is interested in the demographics of HIV infection and therefore

conducts an ‘anonymous’ survey in which individuals report their date of

birth, their place of birth, their sex, and whether they have HIV. Because

the first three variables can be used to accurately predict social security

number, one could use the data from the study to identify individuals with

HIV. Thus, researchers ought to be prohibited from collecting, or at the very

least, publishing data sets containing co-measurement of variable sets like the

one above.12

This discussion raises the question: can one draw strong causal conclusions,

like those guaranteed by Steinsky’s, and Pearl and Verma’s theorems, if all

variables cannot be co-measured?

3 Piecemeal Causal Inference

Suppose that intelligence is an indirect cause of one’s chances of being

admitted to college. Further, suppose there are two distinct ways in which

intelligence affects college admissions, namely by increasing one’s standar-

dized test scores and by improving one’s grades.

Consider what can be learned about the relationship between intelligence

and college admissions in this fictitious example, if one could only co-measure

12 In quantum mechanics, there is a fourth reason certain variables cannot be co-measured,

namely, it is prohibited by Heisenberg’s uncertainty principle. I do not discuss such limitations

on co-measurement because I am primarily interested in causal inference in medicine and the

social sciences. Moreover, there is substantial reason to doubt the CMC and CFC are true at the

quantum level.
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any proper subset of the four variables. In other words, suppose one tried to

construct the aforementioned theory in a piecemeal fashion, by conducting

four different observational studies in which all but one variable is measured.

The variables measured in each of the four respective studies are listed in

Table 1. What would one learn?

Consider first Study 2 in which intelligence, grades, and college admission

decisions are measured. As intelligence is an indirect cause of admission, one

would find the two variables to be unconditionally dependent. Yet even if one

conditioned on grades, one would still detect a dependence between the two

variables. Why? Intuitively, if one conditions on a student’s grades, one has

failed to account for the other causal path by which intelligence affects ad-

missions, namely, through test scores. This intuition can be proven formally

assuming the CFC.

By symmetric reasoning, if one conducts Study 3 in which intelligence, test

scores, and admissions are co-measured, one would find intelligence and ad-

missions to be dependent, even conditional, on test scores. And no other

(three-variable) proper subset contains both intelligence and admissions.

Therefore, if one measures only three variables at a time, the variables intel-

ligence and admissions are dependent, regardless of which variables one puts

in a conditioning set. Why is this observation important? One consequence of

the CMC and CFC is the following:

Theorem 3 (Spirtes, Glymour, Scheines [2001]):

Assuming CMC and CFC, X and Y are adjacent if and only if X and Y are

dependent conditional on every set, S, not containing X and Y.

Figure 4. The causal theory investigated by studies in Table 1.

Table 1. Four Observational Studies Used to Investigate the Causal Theory in

Figure 4

Study 1 Study 2 Study 3 Study 4

Intelligence Intelligence Intelligence Grades

Grades Grades Test Scores Test Scores

Test Scores Admission Admission Admission

Conor Mayo-Wilson224



Hence, by the aforementioned theorem, it appears that one cannot rule out

a direct causal link between intelligence and admissions unless all four vari-

ables can be co-measured. This intuition is correct. Let T1 and T2 be the causal

graphs in Figure 5 below. Notice that T2 is just like T1, except that T2 asserts

that intelligence is also a direct cause of college admission decisions.

Assuming the CMC and CFC, T1 and T2 entail the same probabilistic re-

lations involving three variables or fewer, and so T1 and T2 are indistinguish-

able unless all four variables can be co-measured. Of course, because T1 and

T2 do not postulate the same direct causal links, they are I-distinguishable if all

variables are co-measured (by Pearl and Verma’s theorem).

The aforementioned example is fictitious, but the problem that it illustrates

is not. Mayo-Wilson ([2011]) shows that the same theoretical problem arises in

a real-world setting concerning learning the causal relations among ventilators

and blood oxygen saturation in an intensive care unit. Given the sets of vari-

ables that were co-measured, one could not rule out the existence of particular

direct causal links, even though one would be able to do so, had all variables

been co-measured.

Moreover, the problem does not disappear if one conducts more studies,

and perhaps even more surprisingly, the problem is not a consequence of the

existence of unmeasured ‘confounding’ variables. The theorem given later in

the text shows that, even if one knows all potential confounding variables, the

piecemeal construction of causal theories can increase underdetermination of

theory by evidence. To understand the theorem, it will help to introduce one

definition. Let V be any collection of variables. For instance, V might be the

set containing measurements of intelligence, work ethic, grades, and standar-

dized test scores, as in the aforementioned examples. One can think of an

observational study, U, as a subset of the variables, V. For example, an ob-

servational study that measures grades and standardized test scores can be

represented by the pair consisting of those two variables.

A collection of observational studies, U, therefore, can be represented by a

collection of subsets of V. In the aforementioned example, U consisted of every

three variable subset of the four variables, intelligence, work ethic, grades, and

Figure 5. Two piecemeal indistinguishable theories relative to studies in Table 1.
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standardized test scores. If two theories, T1 and T2, entail that the same con-

ditional independences would be observed after performing a collection of

observational studies, U, then I will say the two theories are piecemeal indis-

tinguishable relative to U. I will omit U when the set of studies is clear from

context. Notice that I-indistinguishability is simply a special case of piecemeal

indistinguishability, namely, the case in which one conducts a study in which

all variables are co-measured. Mayo-Wilson ([2011]) shows that, no matter

how many observational studies are conducted, if not every variable is

co-measured, some information might be lost in the piecemeal construction

of causal theories.

Theorem 4 (Mayo-Wilson [2011]):

For any set of variables containing at least two variables,

(1) There exist distinct causal theories, T1 and T2, with different adja-

cencies that are piecemeal distinguishable (given sufficient data) if

and only if every variable in V is co-measured. In fact, T1 might

contain strictly more causal links than T2, or both T1 and T2 might

contain direct causal links that the other does not.

(2) If the set contains at least four variables, there exist distinct causal

theories, T1 and T2, with different vees that are piecemeal distinguish-

able (given sufficient data) if and only if every variable in V is

co-measured.

In other words, Pearl and Verma’s theorem goes out the window when causal

theories are constructed piecemeal. The previous theorem entails that the piece-

meal construction of causal theories always raises the possibility of underdeter-

mination about both adjacency and orientation information, regardless of how

many observational studies are conducted and how many variables are ac-

counted for. Mayo-Wilson ([2011]) calls this the problem of piecemeal induction.

Does the problem of piecemeal induction undermine the possibility of sig-

nificant causal discovery? It’s not clear. Understanding the severity of the

problem requires answering at least three other questions. First, how much

information is lost in piecemeal causal inquiry? For instance, the aforemen-

tioned theorem entails that piecemeal indistinguishable graphs might possess

different adjacencies and vees, but by how many adjacencies and vees might

they differ? If the number is suficiently small, then one might be able to infer

important causal facts (like those guaranteed by Pearl and Verma’s theorem)

in piecemeal causal inquiry.

Second, how often does the problem of piecemeal induction arise? The

previous theorem says that if particular types of causal theories happen

to be true, then piecemeal inquiry increases causal undetermination.

Importantly, the theorem does not say that all causal theories create a problem
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of piecemeal induction, and it does not provide any information about how

frequently the troublesome causal theories occur in nature. If the problem of

piecemeal induction is rare, then scientists can safely ignore it in practice.

Third, under what circumstances is no causal information lost in piecemeal

inquiry? These three questions are taken up in turn in the next section.

4 The Extent and Frequency of the Problem of Piecemeal

Induction

How much information is lost in piecemeal inquiry? A rough answer to this

question would characterize how much information is lost in the ‘best-case’

scenario, namely, when one can conduct a series of observational studies in

which every proper subset of the variables under investigation is measured. In

such a case, very little adjacency information is lost:

Theorem 5:

Let V be any set of variables, and suppose every proper subset of V can be

measured. If T1 and T2 are piecemeal indistinguishable causal graphs, then T1

contains no more than one adjacency that T2 does not. It follows that T1 and T2

differ by no more than two adjacencies (in the sense that X and Y may be adja-

cent in T1, but not T2, whereas W and Z may be adjacent in T2, but not T1).

Unfortunately, considerably more information might be lost concerning vees:

Theorem 6:

Suppose V contains n � 3 many variables, and suppose that every proper

subset of V can be measured:

(1) If T1 and T2 are piecemeal indistinguishable causal graphs, then T1

contains no more than n� 3 vees that T2 does not.

(2) Moreover, there are piecemeal indistinguishable graphs T1 and T2

such that T1 contains n� 3 vees that T2 does not.

One may wonder how T1 can contain so many more vees than T2 if it can

contain no more than one additional adjacency. The answer is that by adding

one adjacency to T2, one can add many vees at once. For example, suppose

that a causal graph contains a direct causal link from each of ten variables X1,

X2, . . . X10 to a variable, Y, but does not contain any other edges (see Figure 6).

Then if one adds an edge from Z to Y, the resulting graph contains ten vees

that the previous one did not, namely, Xi ! Y  Z for all of the Xi’s.

Thus, the previous two theorems provide some room for optimism. How so?

Recall that Pearl and Verma’s theorem entails that if every variable under

investigation is co-measured, then one can identify all of the direct causal links

in the true theory. That is, one will not err in identifying which pairs of
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variables are directly causally linked. The aforementioned theorem says that,

if every proper subset of the variables is measured, then one will err in iden-

tifying the direct causal links at most two times (and perhaps none).

However, that optimism should be tempered. Researchers rarely have the

luxury of measuring every proper subset of the variables of interest. So it is

natural to ask what can be learned from studies in which no more than a fixed,

small number of variables are observed at a time. The next theorem says,

unsurprisingly, that the smaller the studies, the more underdetermination in-

creases concerning direct causal links:

Theorem 7:

Suppose V contains n variables, and at most k< n variables can be observed at

a time. Then there exist piecemeal indistinguishable causal theories, T1 and T2,

such that T1 contains
n� k+1

2

� �
many direct causal links that T2 does not.

I conjecture that the aforementioned theorem also describes the worst-case

for underdetermination when at most k< n variables are co-measured. It is an

open problem to determine the number of vees by which two indistinguishable

causal theories can differ when at most k < n variables are measured.

Together, the aforementioned theorems provide preliminary answers to the

question, ‘how much information might be lost in piecemeal inquiry?’ An

equally important question is, ‘how frequently is information lost in piecemeal

inquiry?’ In particular, when, if ever is no information lost?

Let’s begin with the last question. It is helpful to consider again the fictitious

example involving intelligence, grades, test scores, and college admissions. In

that example, one cannot discern whether intelligence is a direct cause of

admissions. Therefore, the two theories, T1 and T2, depicted in Figure 5,

with four and five direct causal links, respectively, are piecemeal indistinguish-

able. Notice that, in any causal theory involving four variables, there are no

more than six direct causal links. Thus, in the fictitious example, the two

piecemeal indistinguishable theories contain almost as many direct causal

links as is theoretically possible.

Here’s the insight: piecemeal inquiry seems to fail in the example because

there are several different causal paths from intelligence to admissions. One

might conjecture, therefore, that if the true causal theory is sufficiently simple

(where simplicity is measured by number of direct causal links), then piece-

meal inquiry might succeed in recovering all information that could have been

Figure 6. Adding a single edge from Z to Y creates many vees.
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learned, had all variables been co-measured. This conjecture is borne out by

the following theorem:

Theorem 8:

Suppose there are n variables under investigation, and assume that k < n

variables can be measured at a time. Further, assume that the true causal

theory postulates fewer than 2k� 2 direct causal links. Then no information

is lost in piecemeal inquiry.

Theorem 8 has at least two important philosophical consequences. First, it

highlights the relationship between two central features of scientific practice:

the use of Ockham’s razor and the piecemeal construction of scientific the-

ories. Ockham’s razor is the principle that, all other things being equal, it is

rational to prefer simpler scientific theories to more complex ones. If

Ockham’s razor can be justified, then, by the aforementioned theorem, so

might one justify piecemeal causal inquiry. Why? The aforementioned the-

orem entails that piecemeal inquiry succeeds under the assumption that the

true causal theory is sufficiently simple, and Ockham’s razor asserts that a

systematic preference for simpler theories is rationally justified. Hence, assum-

ing Ockham’s razor, it is rational to assume that the true causal theory can be

constructed in a piecemeal fashion.13

Second, Theorem 8 also provides a rational justification for a robust pattern

of scientific practice. Large observational studies are uncommon, and when

they are conducted (for example, the Framingham study on the causes of heart

disease), researchers typically expect the causal connections among the vari-

ables to be intricate and numerous. If researchers are (at least implicitly) using

principles like the CMC and CFC, then the aforementioned theorem justifies

why such large observational studies need to be conducted only when there is a

large, dense causal graph under investigation; if the true causal theory postu-

lates only a few connections among the variables, then a larger study is un-

necessary to confirm it.

Thus far, I have characterized how much causal information is lost in the

worst-case when many studies are combined, and I also showed that, in the

best-case (that is, when the true causal theory is sufficiently simple), no infor-

mation is lost whatsoever. So one might ask, ‘how often does the problem of

piecemeal induction arise?’ We can make this question precise as follows.

Suppose researchers can measure at most k variables at a time, and say a

causal theory T is k-underdetermined just in case there is some theory, T 0,

that is distinguishable from T when all n variables are measured, but not so

when only k variables can be co-measured. Let pk(n) be the proportion of

causal graphs over n variables that are k-underdetermined. In essence, the

13 For a defense of Ockham’s razor in causal inference, see Kelly and Mayo-Wilson ([2010]).
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proportion pk(n) describes how frequently one will lose at least some causal

information if one assumes all causal theories over n variables are equally

likely. If pk(n) is close to zero and k many variables can be co-measured,

then researchers can take consolation in the fact that the problem of piecemeal

induction is rare. If pk(n) is close to one and one can observe at most k vari-

ables at a time, then researchers will need to make use of domain-specific

knowledge to combat potentially rampant underdetermination. Unfortu-

nately, the news is bad:

Theorem 9:

For any natural number, k, the proportion, pk(n), of graphs over n � k vari-

ables that are k-undetermined approaches 1 as n approaches infinity.

Compare the result with Steinsky’s theorem. According to Steinsky, if all

variables can be co-measured, then about one in fourteen causal theories is

uniquely determined by conditional independence facts. In contrast, by

Theorem 9, if there is any finite bound, k, to the number of variables that

can be co-measured (where k can be as large as one pleases), then the propor-

tion of causal theories uniquely determined by conditional independence facts

approaches zero as the number of variables under investigation increases. This

is bad news, but it gets worse.

The proof of Theorem 9 can be used to show that the amount of informa-

tion lost in piecemeal causal inquiry, on average, becomes arbitrarily bad as

the number of variables increases. How so? Given a causal theory T, define the

extent of k-underdetermination of T to be the maximum number of distinct

causal theories, T1, T2, . . . , Tm, such that (i) T is piecemeal indistinguishable

from Ti for all i � m if at most k many variables are measured at a time; and

(ii) each pair of the theories T, T1, T2, . . . ,Tm are I-distinguishable if all vari-

ables are co-measured. Let Ek(n) be the average extent of k-underdetermin-

ation over all causal theories concerning n variables. Informally, Ek(n)

measures how much the piecemeal construction of causal theories increases

underdetermination, as it makes precise how many theories (on average) one

can no longer distinguish owing to the piecemeal construction of causal the-

ories. Then:

Theorem 10:

For any natural number, k, the average extent of k undetermination, Ek(n),

becomes arbitrarily large as n approaches infinity.

One should be careful in drawing conclusions from the previous two the-

orems, however. In most applications, there is little reason to believe that

every causal theory is equally likely. Some causal graphs are clearly implaus-

ible, given what one knows about the variables of interest. If domain-specific

knowledge guarantees that the true causal graph is sufficiently simple, then the
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aforementioned theorem should not cause researchers to abandon their faith

in finding the true causal theory. On the other hand, if the true causal graph is

known to contain a large number of adjacencies (and that is all that is known),

then pk(n) is a conservative estimate of the likelihood that information con-

cerning direct causal links and their orientations will be lost, and Ek(n) is a

conservative estimate of how much information is lost.

5 Conclusion

The last two theorems show that the problem of piecemeal induction is both

serious and potentially common in various scientific domains. When the

underlying causal truth is sufficiently complex, there is a significant possibility

that a number of relevant causal facts are lost by trying to integrate the results

of many observational studies. Yet the theorems in this article leave open a

number of important questions.

First, even if the probability of k-underdetermination approaches one as the

number of variables under investigation approaches infinity, it is not clear how

fast that limit is reached. In other words, pk(n) may be very small unless n is

very large. If that were the case, then unless researchers have reason to believe

that the causal system under interest contains an enormous number of vari-

ables, they ought not worry about the problem of piecemeal induction. Similar

remarks apply to how quickly the average extent of k-underdetermination

increases as a function of number of variables.

Second, even when the problem of piecemeal induction is inevitable, it is

possible that scientific institutions might be able to plan sequences of studies

so as to minimize the type of causal information that is lost. Danks ([2005])

presents two case studies that suggest precisely this point, but the study of

sequential planning of observational studies (from a causal discovery frame-

work) remains essentially unexplored.

Third, the results above concern the problem of piecemeal induction, as it

pertains to causal inference from observational data. Although there exist

methods for combining the results of several experiments (see Eberhardt,

Hoyer, and Scheines [2010]), the correctness of such methods is generally

assessed under the assumption that any intervention on the variables under

investigation is possible. Such an assumption is often false because of ethical,

financial, and experimental limitations, and, hence, a different but analogous

problem of piecemeal induction will arise in the experimental context when

only certain interventions are possible. Future work ought to characterize the

extent and frequency of that analogous problem.

Fourth, all of the aforementioned theorems assume the CMC and CFC, but

several recently developed causal discovery algorithms work under entirely

different assumptions. Recall the CMC and CFC intend to axiomatize the
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relationship between (i) probability and (ii) causation. When used as principles

for causal inference, however, the principles make use of only a very particular

type of probabilistic information, namely, which variables are conditionally

independent of which others. But data often contain far more information

than just which variables are independent or correlated. For instance, scien-

tists often have good reason to believe that a particular variable can take only

finitely many values or that it is continuous. Data might suggest that one

variable is normally distributed, whereas another is not. When used alone,

the CMC and CFC make no use of such information, which can often be

helpful in causal discovery.14 Future work ought to characterize the severity

and frequency of the problem of piecemeal induction under these alternative

assumptions.

Fifth, the aforementioned theorems show that the problem of piecemeal

induction is a possibility in some areas of causal discovery, and my arguments

(as well as the case study in Mayo-Wilson [2011]) show that, at least in some

scientific contexts, it is a real problem. However, a systematic series of case

studies is still necessary to characterize the types of domains/systems in which

the problem is most pernicious and frequent. The ability to hold particular

variables fixed in an experimental context (as is typical in physics and chem-

istry) and available domain-specific knowledge might eliminate much of the

underdetermination caused by the piecemeal construction of causal theories.

Perhaps more importantly, existing algorithms for the piecemeal construction

of causal theories ought to be improved to incorporate such domain-specific

knowledge when available.

Finally, this article takes preliminary steps in characterizing what can be

learned from the piecemeal construction of causal theories. But it is obvious

that the problem of piecemeal induction is a much broader phenomenon—one

that likely occurs in all areas of science in which data from disparate sources

needs to be integrated. Scientific theorizing increasingly requires synthesizing

data from more and more areas, and scientists have become ever more reliant

on statistical methods that allow them to analyze large and complex data sets.

Thus, substantial work remains for philosophers of science and methodolo-

gists in characterizing the frequency and extent of the problem of piecemeal

induction in new domains of empirical research.

14 See references in Footnote 8. Since submitting this article for publication, the author has made

significant progress in answering the third and fourth questions here. Contact the author for a

summary of what can be learned from piecemeal causal inference from experimental data under

various parametric assumptions.
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Appendix A

A1. Definitions and Previous Results

Both appendices assume familiarity with Bayesian networks and their use in

causal discovery. Here, I introduce some notational conventions and state

some known results that will be used in the proofs of the theorems.

For any finite set, V, let DAGV denote the set of all directed acyclic graphs

(DAGs) that have the vertex set V. I use the uppercase letters G and H to

denote members of DAGV. For any graph G 2 DAGV and any vertex v2V,

let PAG(v) denote the set of parents of v in G, and let ChG(v) denote its chil-

dren. Let DescG(v) denote the set of descendants of v in G, and similarly let

AncG(v) denote its ancestors. If v1 ! v3  v2 2 G, then we say v3 is a collider

with respect to v1 and v2. If v3 is a collider with respect to v1 and v2 and, in

addition, there is no edge between v1 and v2, then we say v3 is an unshielded

collider with respect to v1 and v2. Accordingly, for any two variables, v1,v22V,

and any G 2 DAGV , define UCG(v1,v2) to be the the set all v3 such that

v1 ! v3  v2 is an unshielded collider in G. Finally, for any v2VG, define

the Markov Blanket, MBG(v), of v in G to be the set of vertices w that are either

adjacent to v or that form unshielded colliders v! u w in G.

A path, �, in G is a non-repeating sequence of vertices � ¼ hv1,v2, . . . ,vni

such that vi and vi + 1 are adjacent if 1 � i < n. The path � is called directed if vi

is a parent of vi + 1 for all i. Given a path � ¼ hv1,v2, . . . ,vni, let �#vi ¼

hv1, . . . ,vii, and call �#vi the initial segment of � that terminates with vi.

Similarly, let �"vi ¼ hvi, . . . ,vni, and call �"vi the tail of � that begins with vi

and terminates with the end of �. Given two paths, �1 and �2, in a graph, G,
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such that the endpoint of �1 is the starting point of �2, let �1C�2 denote the

concatenation of the two paths. If � is a path between v and v0, and no vari-

ables on � are colliders on �, then we say � is a trek. In diagrams, I use straight

lines to indicate the existence of an edge, and if I wish to indicate that the edge

has a particular direction, then I will use an arrow marker (for example, see the

edge between v1 and v2 in Figure 7). Undirected paths are indicated by curves

with no end markers (like that between v2 and v3), and a directed path is

indicated by a curve with an arrow marker at one end (e.g. there is a directed

path from v4 to v3).

A2. Bayesian Networks and Markov Equivalence

Let V be a set of random variables on a measurable space ð�,FÞ. I will use the

lowercase letters v, w, x, y, z to denote elements of V, the uppercase letters U

and W to denote subsets of V, and scripted letters U,W to denote collections

of subsets of V, i.e. U,W � 2V .

For any probability measure, p, on ð�,FÞ, any two variables v, v0 2 V and

any U � V n {v, v0}, write p � v
‘

v0jU if, with respect to the measure induced

by p, the variables v and v0 are conditionally independent, given U. The assertion

v
‘

v0jU is called a conditional independence constraint (CIC). Define CICV to

be the set of all such CICs concerning the variables V. For any measure, p,

define:

CICV
p :¼ {� 2 CICV : p � �}

In other words, CICV
p contains the set of all true assertions about which

variables of V are conditionally independent of others with respect to p.

For any G 2 DAGV , let �(G) denote the set of CICs of the form v
‘

v0jPAGðvÞ,

where v, v0 2 V , PAGðvÞ is the set of parents of v in G, and v is not an ancestor of v0

in G. Say that p is Markov to G if and only if �ðGÞ � CICV
p . Define:

CICV
G ¼ \{CICV

p : p is a measure onð�,FÞ&�ðGÞ � CICV
p }

If CICV
p ¼ CICV

G , then p is said to be faithful to G.

Although it is standard to study the set of conditional independencies that

hold with respect to a Bayes net, in the following it will be helpful to consider

dependencies as well. Accordingly, let CDCV be the set of all conditional

dependence constraints over the variables in V (i.e. the set of negations of

the assertions in CICV), and similarly, define:

CDCV
G ¼ {� 2 CDCV : � 62 CICV

G }

CIDCV
¼ CICV

[ CDCV

CIDCV
G ¼ CICV

G [ CDCV
G

Figure 7. From left to right: An edge, undirected path, and directed path.
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If CICV
G ¼ CICV

H , say G and H are Markov equivalent, and write G�H.

Denote the Markov equivalence class of G by [G].

We will use the lowercase Greek letters f,  , and so on to denote elements of

CIDCV, and upper case Greek letters � and � to denote subsets of CIDCV. For

any � � CIDCV , we write G�� if � � CIDCV
G , and we say that G satisfies �.

A3. Graphical Structure and Probabilistic Relations

The following theorems and corollaries characterize the relationship between

(i) graphical properties (like the existence of paths, treks, colliders, etc.) in

Bayesian networks; and (ii) the conditional independence structure repre-

sented by the graph. They are stated without proof and used frequently in

the remainder of the proofs.

Definition 1

Let G 2 DAGV , v1, v2 2 V , and suppose v1 6¼ v2. Let � be an undirected path

between v1 and v2, and U 7 Vn{v1,v2} Then a vertex, v3, is active on � in G,

given U, just in case either:

(1) v3 is not a collider on � and v3 62 U

(2) v3 is a collider on � and either (i) v32U or (ii) there is

w2DescG(v3) \U (or both).

Say a path � between v1 and v2 is active, given U, just in case every variable

on � is active.

Definition 2

Let G 2 DAGV , v1, v2 2 V , and suppose v1 6¼ v2. Let U 7 Vn{v1,v2} Then v1 and

v2 are d-separated, given U, if and only there is no undirected path, �, between v1

and v2 such that � is active relative to U. Say they are d-connected, given U,

otherwise.

Proposition 1 (Pearl and Verma)

Let G 2 DAGV . For all v1,v22V, and U 7 Vn{v1,v2}:

v1

a
v2jU 2 CICG if and only if v1 and v2 are d-separated given u:

Two useful corollaries of Pearl and Verma’s theorem are below:

Corollary 1

Let G 2 DAGV and v1,v22V. Then v1 and v2 are adjacent in G if and only if

v1

‘
v2jU 62 CICG for all U 7 Vn{v1,v2}.

Corollary 2

Let G 2 DAGV and v1,v2,v32V. Then v1 ! v2  v3 is a collider in G if and

only if v1

‘
v3jU 62 CICG for all U 7 VG containing v2.
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Proposition 2 (Pearl and Verma)

Let G, G0 2 DAGV . Then G � G0 if and only if G and G0 possess the same

adjacencies and unshielded colliders.

Definition 3

Let G 2 DAGV , v1, v2 2 V , and U 7 Vn{v1,v2}. A path, �, between v1 and v2 is

called an inducing path over U if every member of U that appears on � is a

collider, and every collider on � is an ancestor of either v1 or v2.

Proposition 3 (Pearl and Verma [1991])

Let G 2 DAGV , v1, v2 2 V , and U 7 Vn{v1,v2}. Then v1 and v2 are

d-connected, given any subset U 0 � U if and only if there exists an inducing

path between v1 and v2 over U.

A4. U-equivalence

Given U � 2V , define CICUG ¼ [U2UCICU
G . Here, U � 2V is intended to repre-

sent a collection of observational studies, and CICUG represents the set of CICs

one would endorse if one sampled from each of the sets U 2 U infinitely often.

See Mayo-Wilson ([2011]) for more detailed discussions of these points. If

CICUG ¼ CICUH , say G and H are U-equivalent, and write G �U H. Denote the

U-equivalence class of G by ½G	U . Two graphs are U-equivalent if, in the absence

of background information on the data generating process, no amount of ob-

servational data collected in the observational studies, U, would allow one to

know which of the two graphs truly describes the causal relations among the

variables, V. Such background information might include, among other things,

constraints on the graph (for example, v1 is a known cause of v2), parametric

assumptions (for example, the model is known to be linear Gaussian), or as-

sumptions that the truth belongs to a large class of non-parametric models (for

example, the model is linear with non-Gaussian errors).

For each k � jV j, if U ¼ {U � V : jU j � k}, then we let CICk
G ¼ CICUG and

write G�kH if G �U H. In this case, we say G and H are k-equivalent. Denote

the k-equivalence class of G by [G]k. The precise statement of Theorem 3 in the

body of the article, then, is as follows:

Theorem 3 (Mayo-Wilson [2011])

For all natural numbers n � 2 and all sets, V, such that jV� n:

(1) There exist G, H 2 DAGV such that G�n�1H, but H contains strictly

more edges than G. Moreover, there exist G, H 2 DAGV such that

G�n�1H and both G and H contain edges that the other does not.

(2) If n � 4, then there exist G, H 2 DAGV such that G�n�1H, but H

contains strictly more unshielded colliders than does G.
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Appendix B

B1. Proofs of Theorems

We now precisely restate and prove the theorems in the body of the text.

Theorem 4

For any set, V, if G�n�1H (where n ¼ jVj), then G contains at most one edge

that H does not, and H can contain at at most one edge that G does not. So it

follows that G and H differ by at most two edges.

Lemma 1

Let G and H be DAGs over n-variables and k < n. Suppose G�kH and that v1

and v2 are adjacent in H, but not G. Then either v1 or v2 (or both) has at least

k� 1 parents in G.

Proof

For the sake of contradiction, suppose that both v1 and v2 have fewer than

k� 1 parents in G. As G is acyclic, either v1 is not an ancestor of v2 or v2 is not

an ancestor of v1 in G. Without loss of generality, assume v1 is not an ancestor

of v2. As v1 and v2 are not adjacent in G, it follows that v2 is not a parent of v1 in

G. By the Markov condition, G� v1

‘
v2jPAG(v1). By assumption, PAG(v1)

contains no more than k� 2 variables, and so v1

‘
v2jPAGðv1Þ 2 CDCk

G. As

G�kH, it follows that H� v1

‘
v2jPAG(v1), which is impossible, as v1 and v2 are

adjacent in H by supposition, and hence dependent, given any set of variables

by Lemma 1.

Corollary 3

Let V be a set with n variables, G, H 2 DAGV , and suppose G�n�1H. Further,

suppose that v1 and v2 are adjacent in H, but not in G. Then every variable

v32Vn{v1,v2} is a parent of v1 in G, or every such variable is a parent of v2 in G.

We now prove Theorem 4. For the sake of contradiction, assume that there

are two distinct pairs of variables {v1,v2} and {v3,v4} that are respectively

adjacent in H, but not in G. By Corollary 3, because v3 and v4 are not adjacent

in G, it follows that both v1 and v2 are parents of v3, or both are parents of v4.

Without loss of generality, assume both are parents of v3. Again, by Corollary

3, because v1 and v2 are not adjacent in G, it follows that both v3 and v4 are

parents of v1 or both are parents of v2. In particular, v3 is a parent of v1 or it is a

parent of v2, thereby creating a cycle.

Theorem 5

Let V be any set of random variables and suppose that jV� n.

(1) For all G, H 2 DAGV , if G�n�1H, then H contains no more than

n� 3 unshielded colliders that G does not.
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(2) There exist G, H 2 DAGV such that G�n�1H and H contains n� 3

unshielded colliders that G does not.

Proof of Theorem 5.1

Let C be the set of triples l ! m r that form unshielded colliders in H, but

not G. Here, ‘l’ stands for ‘left’, ‘m’ stands for ‘middle’, and ‘r’ stands for

‘right’. We break the proof into several smaller lemmas.

Lemma 2

For all triples l ! m r in C, the triple l, m, r does not form a trek in G.

Proof

Suppose that, for the sake of contradiction, l�m� r is a trek in G. As l and

r are not adjacent in H, by Lemma 1, there is some set U 7 Vn{l,r} such that

H�l
‘

rjU. By Corollary 2, it must be the case that m 62 U . As m 62 U , the trek

l�m� r is active in G, given U, and so G 6�l
‘

rjU . As U contains no more

than n� 3 elements (as l, m, r 62 U), this contradicts the fact that G�n�1H. #

Lemma 3

For all triples l ! m r in C, there is no l� r edge in G.

Proof

As l ! m r is an unshielded collider in H, there is some U 7 Vn{l,m,r}

such that H�l
‘

rjU. But by Lemma 1, if G contained an l� r edge, then

G 6�l
‘

rjU , contradicting the assumption that G�n�1H. #

Lemma 4

For all triples l ! m r and l0 ! m0  r0 in C, we have m ¼ m0.

Proof

Suppose not. Then there exist triples l ! m r and l0 ! m0  r0 in C such

that m 6¼ m0. Note that (i) G contains neither an l� r nor a l0 � r0 edge by

Lemma 3; and (ii) the triples l, m, r and l0, m0, r0 cannot be treks in G by Lemma

2. As the triples are unshielded colliders in H, but not in G, it follows from (i)

and (ii) that:

(1) in G, either l and m are not adjacent or m and r are not adjacent, and

(2) in G, either l0 and m0 are not adjacent or m0 and r0 are not adjacent.

As m 6¼ m0, it follows that H contains two edges that G does not, contradicting

Theorem 4. #
Next, we claim that we may write the triples in C so that for all l ! m r

and l0 ! m0  r0 in C, we have l ¼ l0. The reasoning is analogous to that of

Lemma 4. Suppose for the sake of contradiction, there are triples l ! m r

and l0 ! m0  r0 in C such that l 6¼ l0, l 6¼ r0, l0 6¼ r, and r 6¼ r0. Using the same
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reasoning as in Lemma 4, one can show H contains at least two edges that G

does not, contradicting Theorem 4.

Now we finish the proof of Theorem 5.1. Suppose for the sake of contra-

diction that H contains at least n� 2 unshielded colliders l ! m ri, where

1 � i � n� 2. Notice that only the variable ri contains the index i, as we may

assume the middle and left element of the triples are identical by the reasoning

above. By Lemma 2, none of the triples l ! m ri are treks in G and, more-

over, by Lemma 3, G contains no edges between l and ri for all i � n� 2. So if

l, m, ri is not an unshielded collider in G, then it must be the case that one of

the edges, l�m or m� ri, is not present in G. As this holds for all i � n� 2,

and H can contain at most one edge that G does not, it must be the case that l

and m are not adjacent in G.

So, we have shown that l is not adjacent to m and l is not adjacent to ri, for

all i � n� 2 in G. In other words, there are no edges incident to l at all in G

and, thus, there are no paths from l to any other variable in G. By Proposition

1, it follows that G�l
‘

vjU for all v2V and all U 7 Vn{l,v}. So G�l
‘

m, but

because l and m are adjacent in H, we have H 6�l
‘

m by Lemma 1. So

G 6�n�1 H, contradicting assumption.

Proof of Theorem 5.2

Suppose V has n � 3 elements, and let {v1,v2,v3,w1,w2, . . . ,wn�3} be an enu-

meration of such elements. Let G be the graph containing all and only the

following edges:

(1) An edge from v1 and v3.

(2) An edge from wi to v2 for all i � k.

(3) An edge from v3 to v2.

(4) An edge from wi to wj for all i < j.

Let H be the result of adding the edge v1 ! v2 to G1. Note that v1 ! v2  wi

is an unshielded collider in H, but not in G, for all i � n� 3. So H contains

n� 3 unshielded colliders that G does not.

Figure 8. The graphs G and H described in Theorem 5.2.
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The only non-adjacent pairs of vertices in G consist of (i) v1 and v2; and

(ii) v1 and wi for i � k. So the only CICs that hold in G concern these

pairs.

First, consider the pair consisting v1 and v2. As v1 ! v3 ! v2 is a trek, it

follows that v1 and v2 are dependent on any set U not containing v3. Consider

any U 7 V containing v3 and no more than n� 3 variables. As U contains no

more than n� 3 variables and v32U, there is some wi 62 U and, hence,

v1 ! v3  wi ! v2 is a d-connecting path between v1 and v2, given U in G.

So there is no CIC f of the form v1

‘
v2jU in CICn�1

G .

Next consider any pair consisting of v1 and wi for i � n� 3. In G, the only

paths between v1 and wi pass through v2 or v3 (or both). Moreover, on all such

paths, either v2 or v3 is a collider. It follows that v1 and wi are unconditionally

independent and, moreover, that v1 and wi are dependent, given any set U

containing either v2 or v3. So the only other relevant CICs to consider are of

the form v1

‘
wijW, where W is a collection of the wj’s other than wi. It is easy

to see (again using the relation of d-connection and conditional dependence)

that all such CICs are satisfied by G. In sum:

CICn�1
G ¼ [{v1

a
wijW : W � {w1, . . . , wn�3} n {wi}}i� n�3

Now consider the graph H. The only non-adjacent pairs of vertices in H

consist of v1 and some wi for i � k. So the only CICs that hold in H concern

these pairs. By the same reasoning as with G, it is easy to see that

CICn�1
H ¼ [{v1

a
wijW : W � {w1, . . . , wn�3} n {wi}}i� n�3

So G �U H, but H contains n� 3 unshielded colliders that G does not.

Theorem 6

For any V and any k � n ¼ jV j. There exist G, H 2 DAGV such that G�kH,

but H contains
n� k+1

2

� �
many edges that G does not.

Proof

Enumerate the vertices of V ¼ {v1,v2, . . . ,vn}. Construct G as follows. For any

i � k� 1 and any j > i, draw an edge from vi to vj. The graph G contains no

other edges (See Figure 9). Construct H by drawing an edge from vi to vj for all

i < j � n, so that H is a complete graph. Notice G is a subgraph of H and that

Figure 9. The graph G described in Theorem 6.
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H contains
n� k+1

2

� �
edges that G does not, as every pair {vi,vj} for

k � i < j is adjacent in H, but not G. We claim G�kH.

As all variables in H are adjacent, by Lemma 1, it follows that CDCV
H ¼ ; and

hence, CICk
H ¼ ;. To show G�kH, then, it is necessary to show that CICk

G ¼ ;.

As vi and vj are adjacent if i < j and i � k� 1, by Lemma 1, it follows that the

only independences in G are of the form vi

‘
vjjU where i, j � k. So let i, j � k,

and consider any arbitrary CIC vi

‘
vjjU 2 CICk. As jU j � k� 2, it follows

that there is some vm 62 U such that m < k � i, j. By definition of G, the triple

vi  vm ! vj is a trek in G, and as vm 62 U , it follows that this trek is active,

given U. Hence, G 6�vi

‘
vj jU , or in other words, vi

‘
vjjU 62 CICk

G. As

vi

‘
vjjU 2 CICk was chosen arbitrarily, it follows that CICk

G ¼ ; as desired.

Next we prove:

Theorem 7

Suppose G has fewer than 2k� 2 edges. Then [G] ¼ [G]k.

Here’s the idea of the proof. Call the set of edges in a graph its skeleton. We

first show that if two k-equivalent graphs possess different skeletons, then they

have at least 2k� 2 edges. So if a graph has fewer than 2k� 2 edges, then its

skeleton is determined by CICs involving k variables or fewer. We then show

that k-equivalent graphs with the same skeletons and sufficiently few edges

also share the same set of unshielded colliders and, hence, are Markov equiva-

lent by Proposition 2.

Lemma 5

Suppose v1 and v2 are not adjacent in G. Then there is

U 7 MBG(v2)n(UCG(v1,v2)[ {v1}) such that G�v1

‘
v2jU.

Proof

Suppose not for the sake of contradiction. Then, by Proposition 3, there is an

inducing path, �, between v1 and v2 over MBG(v2)n(UCG(v1,v2)[ {v1}). Let w

be the variable adjacent to v2 on �.

Claim

w is a collider on �.

If not, then w 62MBGðv2Þ n ðUCGðv1, v2Þ [ {v1}Þ by definition of inducing

path. But as w is adjacent to v2, it is a member of the Markov Blanket of v2.

So w2UCG(v1,v2)[ {v1}. If w ¼ v1, then v1 and v2 would be adjacent, contra-

dicting assumption. If w2UCG(v1,v2), then w is a descendant of both v1 and v2.

I claim that w is also an ancestor of v1, contradicting the fact that G is acyclic.

Why?

As w is a non-collider on � and a descendant of v2, it follows that there is an

edge ‘out of’ w towards v1 on � (see Figure 10 below). If the subpath of � is not

The Limits of Piecemeal Causal Inference 241



directed from w to v1, then it follows that there is some collider between w and

v1 on �. Let c be the collider closest to w, and note that c is a descendant of w

and v2. As � is an inducing path, c is an ancestor of either v1 or v2. By

acyclicity, it is not an ancestor of v2. So c is an ancestor of v1. As w is an

ancestor of c, it follows that w is an ancestor of v1, as desired. This finishes the

proof of the claim.

So we have shown that w is a collider on �. Hence, it is an ancestor of either

v1 or v2 by definition of inducing path. By acyclicity, it must be an ancestor of

v1. Let z be the variable (other than v2) adjacent to w on �. Notice that z is a

parent of w as w is a collider on �. Moreover, as w is a collider on �, it follows

that z is not a collider on �. Hence, z 62MBGðv2Þ n ðUCGðv1, v2Þ [ {v1}Þ. But

clearly z2MBG(v2), and so it follows that z2UCG(v1,v2)[ {v1}) by definition

of inducing path. If z ¼ v1, then w would be a descendant of v1, which is

impossible as w is an ancestor of v1. So z2UCG(v1,v2). So z is a descendant

of v1. Hence, w is a descendant of v1, as w is a child of z. Again, this is a

contradiction as w is an ancestor of v1.

Lemma 6

Let G and H be DAGs over n-variables and k< n. Suppose G�kH, and that v1

and v2 are adjacent in H, but not G. Then G contains at least 2k� 2 edges.

Proof

By Lemma 1, it follows that either v1 or v2 has k� 1 parents in G. Without loss

of generality, assume that v1 has at least k� 1 parents in G. So if we let EG(v1)

be the set of edges incident to v1, then jEGðv1Þj � k� 1.

By Lemma 5, there is some set U 7 MBG(v2)n{v1} such that G� v1

‘
v2jU. As

v1 and v2 are adjacent in H, by Corollary 1, we have that H 6�v1

‘
v2jW for all

W 7 Vn{v1,v2}. As G�kH and G� v1

‘
v2jU, it follows that jU j � k� 1. As

U 7 MBG(v2)n{v1}, it must be the case that jMBGðv2Þ n {v1}j � k� 1. We

claim we can define an injective function, f, from MBG(v2)n{v1} into

EGnEG(v1), where, recall, EG is the set of edges in G. This would finish the

proof of the theorem as then:

jEG n EGðv1Þj � jMBGðv2Þ n {v1}j

� jU j

� k� 1

Figure 10. The graph described in the claim in Lemma 5.
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which would then entail

jEG � jEG n EGðv1Þj+ jEGðv1Þj � ðk� 1Þ+ ðk� 1Þ � 2k� 2:

How can one define f ? For each variable, w, that is adjacent to v2, let f(w) be

the edge that is incident to v2 and w. For each variable, w, that forms an

unshielded collider v2 ! z w with respect to v2, let f(w) be the z w edge.

Notice that f(w) is not a member of EG(v1) in either case, as we have assumed

that w2MBG(v2)n{v1}, and in particular w 6¼ v1. The function f is clearly in-

jective, and so we are done.

Lemma 7

Suppose G has fewer than 2k� 2 edges and that G�kH. Then G and H have

the same skeleton.

Proof

We show that (i) any two variables that are adjacent in H are also adjacent in

G; and (ii) any two variables adjacent in G are adjacent in H.

To show (i), suppose for the sake of contradiction that v1 and v2 were ad-

jacent in H, but not G. Then, by Lemma 6, it would follow that G contains at

least 2k� 2 edges, contradicting assumption. So we have established (i).

As any two variables adjacent in H are also adjacent in G and, moreover, G

contains fewer than 2k� 2 edges, it follows that H contains fewer than 2k� 2

edges. By the same reasoning as above, G cannot contain an edge that H does

not, as otherwise H would contain at least 2k� 2 edges.

Proof of Theorem 7

By Lemma 7, if G�kH, then G and H have identical skeletons. Hence, by

Lemma 2, it suffices to show that if if G�kH, then G and H have the same

set of unshielded colliders. Suppose not. Then there is some triple

v1 ! v2  v3 that is an unshielded collider in H, but not in G, or vice versa.

Without loss of generality, assume the unshielded collider occurs in H, but not

G. As G and H have the same skeleton, the triple v1� v2� v3 forms a trek in G.

By the Markov condition, there is some UG such that v1

‘
v3jUG 2 CICV

G

and either UG 7 PAG(v1) or UG 7 PAG(v2). Without loss of generality, assume

UG 7 PAG(v1). As the triple v1� v2� v3 is a trek in G by assumption, it follows

that v22UG. As G�kH and v1 ! v2  v3 is an active path from v1 to v3, given

UG in H, it follows that jUGj � k� 1. Hence, v1 has at least k� 1 parents in G.

Let EG(v1) and EH(v1) be the set of edges incident to v1 in G and in H, respect-

ively. Because G has fewer than 2k� 2 edges and EG(v1) contains at least k� 1

members, it follows that EGnEG(v1) contains no more than k� 2 edges.

Because H and G have the same skeleton, it follows that EHnEH(v1) likewise

has no more than k� 2 edges.
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As in Lemma 6, one can define an injection from MBH(v3)n{v1} into

EHnEH(v1), and so jMBH ðv3Þ n {v1}j � k� 2. Moreover, by Lemma 5, there

is some UH 7 MBH(v3)n(UCH(v1,v3)[ {v1}) such that v1

‘
v3jUH 2 CICV

H . As

UH 7 MBH(v3)n(UCH(v1,v3)[ {v1}) and jMBH ðv3Þ n {v1}j � k� 2, it follows

that jUH j � k� 2. Hence, v1

‘
v3jUH 2 CICk

H . Because G�kH, it follows

that v1

‘
v3jUH 2 CICk

G.

To obtain a contradiction, we note that, because the triple v1 ! v2  v3 is

an unshielded collider in H and v1

‘
v3jUH 2 CICk

H , it must be the case that

that v2 62 UH . However, because the triple forms a trek in G and

v1

‘
v3jUH 2 CICk

G, it must be the v22UH.

Let k be a fixed natural number, V be any set of random variables of size

n � k, and G 2 DAGV . Say G is k-underdetermined if there exists H 2 DAGV

such that G 6� H but G�kH. Let pk(n) be the proportion of DAGs over n

vertices that are k-underdetermined. Let Ek(G) be the maximum number of

DAGs H1, H2, . . . Hm such that Hi 6� G but Hi�kG. Finally, let Ek(n) be the

average of Ek(H) over all graphs, H, over n vertices. Then:

Theorem 8

pkðnÞ ! 1 as n!1

Theorem 9

EkðnÞ ! 1 as n!1

In the following proofs, let Gk denote the DAG (pictured in Figure 11)

containing k vertices, {v1,v2,w1, . . . wk}, and the following edges:

(1) An edge from v1 to wi for all 1 � i � k� 2:

(2) An edge from wi to v2 for all � i � k� 2:

(3) An edge from v1 to v2.

Let Gk,m denote the DAG containing km vertices, with m disconnected copies

of Gk. To prove Theorems 8 and 9, we use two lemmas.

Lemma 8

Let n> k and G 2 DAGn. Suppose H contains an isomorphic copy of Gk, and

let G be the graph obtained by deleting the edge from v1 to v2 in H. Then

H�kG.

Figure 11. The graph Gk described in Theorems 8 and 9.
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Lemma 9

Let H be a DAG with k vertices. For each n � k, let pn(H) be the proportion of

DAGs with n vertices containing an isomorphic copy of H as a subgraph.

Then lim
n!1

pnðHÞ ¼ 1

We first prove the theorems using these two lemmas. We then prove Lemma

8. A proof of Lemma 9 requires using probabilistic combinatorial techniques

and applying some fairly technical results from Bender et al. ([1986]) and

McKay ([1989]). Hence, a full proof is omitted because it is beyond the

scope of this article. Contact the author for a complete proof.

Proof of Theorem 8

By Lemma 9, it follows that pnðGkÞ ! 1. By Lemma 8, every graph containing

Gk as a subgraph is k-underdetermined, as an edge can be removed from each

such graph to obtain a k-equivalent graph. So it follows that pkðnÞ ! 1.

Proof of Theorem 9

We must show that, for all m 2 N, there is some nm 2 N such that EkðnÞ � m

for all n � nm. To this end, note that by Lemma 9, it follows that

pnðGk, 2mÞ ! 1. So let nm be the least natural number such that pnðGk, 2mÞ >
1
2

for all n � nm. By Lemma 8, one can remove 2 m many edges from every graph

containing Gk,2m, and, hence, if G contains Gk,2m as a subgraph, it follows that

EkðGÞ � 2m. Thus, EkðnÞ >
1
2
� 2m ¼ m for all n � nm, as desired.

Proof of Lemma 8

As H is obtained by adding an edge to G, it follows that CDCk
G � CDCk

H . So it

suffices to show that CDCk
H � CDCk

G. To this end, let � 2 CDCk
H be the as-

sertion :z1

‘
z2jS. So by Proposition 1, it follows that there is a d-connecting

path, �H, from z1 to z2, given S in H. We construct a d-connecting path, �G,

from z1 to z2, given S in G.

Case 1

Suppose �H is also a path in G. Then it’s easy to show that �G ¼ �H is likewise

d-connecting in G. Why? Every non-collider on �G is not a member of S

because �H is active, given S in H. Moreover, every collider, c, on �G is also

a collider on �H. As �H is active, given S, it follows that either c or one of c’s

descendants in H is a member of S. But as H is obtained from G by adding an

edge from v1 to v2, and v1 is already an ancestor of v2 in G (as G contains Gk as

a subgraph), it follows that the set of descendants of c in H and in G are

identical.

Case 2

Suppose �H is not a path in G. As H is obtained from G by adding an edge

from v1 to v2, it follows that �H contains the edge v1 ! v2.
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As jSj � k� 2, there is some i � k� 2 such that wi 62 S. Consider the vari-

able sequence obtained by modifying �H by removing the v1 ! v2 edge, and

replacing it with the trek v1 ! wi ! v2, i.e. consider a ¼

(�H#v1)Chv1,wi,v2iC(�H"v2). The sequence a is pictured in Figure 12.

If a is a path in G, then let �G ¼ a. As �H is active, given S, both �H#v1 and

�H"v2 are active, given S in G. Moreover, as wi 62 S and is a non-collider on

�G, it follows that wi is active, given S in G. Finally, v1 and v2 are both active,

given S in G because (i) v1 is a non-collider on both �H and �G, and hence is

active on one if and only if it’s active on the other; and (ii) v2 is a collider on �H

if and only if it is a collider on �G, and hence is active on one if and only if it’s

active on the other.

If a is not a path, then wi already occurs on �H. So there are two cases:

Case 2a

Suppose wi occurs before v1 on �H. Define �G ¼ (�H#wi)Chwi,v2iC(�H"v2).

The path �G is indicated in red in Figure 13.

The sequence �G is a path because �H is a path, and it’s d-connecting, given

S, in G precisely because �H is. Why? As �H is active, given S, it follows that

both of the segments �H#wi and �H"v2 are active, given S in G, and the

variable wi is active because it’s a non-collider on �G and (by choice) not an

element of S.

Case 2b

Suppose wi occurs after v2 on �H. Define �G¼ (�H#v1)Chv1,wiiC(�H"wi). The

sequence �G is a path because �H is. To show it’s d-connecting, given S in G,

note first that, as �H is active, given S, it follows that both of the segments

�H#v1 and �H"wi are active, given S in G. The only thing to show is that wi is

Figure 12. The graphs G and H in Case 2 of Lemma 8.

Figure 13. Case 2a of Lemma 8.

Figure 14. Case 2b of Lemma 8.
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active on �G. Suppose not for the sake of contradiction. Then wi is a collider

on �G, as is pictured in Figure 14. As wi 62 S and �H is active in H, we know

that wi is a not a collider on �H. So it follows that �H contains a segment of the

form y1 wi y2.

Consider the segment of �H lying between v1 and wi in H. As this segment

contains edges directed out of both v1 and wi, there must be some collider

between v1 and wi on �H, and, in particular, one such collider c is closest to wi

on �H. So c is a descendant of wi in both G and H. As �H is active given S in H,

either c or one of its descendants in H is a member of S. As c’s descendants in

G and H are identical, it follows that either c or one of its descendants in G is a

member of S. As wi is an ancestor of c, either wi or one of its descendants in G

is a member of S. But then wi is active on �G, contradicting assumption.

References

Bender, E., Richmond, L., Robinson, R. and Wormald, N. [1986]: ‘The Asymptotic

Number of Labelled Acyclic Digraphs’, Combinatorica, 6, pp. 15–22.

Cartwright, N. [1989]: Natures Capacities and Their Measurement, Oxford: Oxford

University Press.

Cartwright, N. [2002]: ‘Against Modularity, the Causal Markov Condition, and Any

Link Between the Two: Comments on Hausman and Woodward’, The British

Journal for the Philosophy of Science, 53, pp. 411–53.

Cartwright, N. [2007]: Hunting Causes and Using Them: Approaches in Philosophy and

Economics, Cambridge: Cambridge University Press.

Danks, D. [2002]: ‘Learning the Causal Structure of Overlapping Variable Sets’, in S.

Lange, K. Satoh and C. H. Smith (eds), Discovery Science: Proceedings of the Fifth

International Conference, Berlin: Springer-Verlag, pp. 178–91.

Danks, D. [2005]: ‘Scientific Coherence and the Fusion of Experimental Results’, The

British Journal for the Philosophy of Science, 56, pp. 791–807.

Eberhardt, F., Hoyer, P. O. and Scheines, R. [2010]: ‘Combining Experiments to

Discover Linear Cyclic Models with Latent Variables’, Journal of Machine

Learning, Workshop and Conference Proceedings (AISTATS 2010), 9, pp. 185–92.

Hausman, D. and Woodward, J. [2002]: ‘Manipulation and the Causal Markov

Condition’, Philosophy of Science, 71, pp. 846–57.

Hausman, D. and Woodward, J. [2004]: ‘Modularity and the Causal Markov

Condition: A Restatement’, British Journal Philosophy of Science, 55, pp. 147–61.

Freedman, D. and Humphreys, P. [1999]: ‘Are There Algorithms That Discover Causal

Structure?’, Synthese, 121, pp. 29–54.

Geiger, D. and Heckerman, D. [1994]: ‘Learning Gaussian Networks’, in D.

Heckerman (ed.), Proceedings of the Eleventh Conference on Uncertainty in

Artificial Intelligence, Montreal, Quebec: Morgan Kaufmann, pp. 274–84.

Gillespie, S. and Perlman, M. [2001]: ‘Enumerating Markov Equivalence Classes of

Acyclic Digraph Models’, in M. Goldszmidt, J. Breese and D. Koller (eds),

The Limits of Piecemeal Causal Inference 247



Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence,

Seattle, WA: Morgan Kaufmann, pp. 171–7.

Hesslow, G. [1976]: ‘Discussion: Two Notes on the Probabilistic Approach to

Causality’, Philosophy of Science, 43, pp. 290–92.

Kelly, K. and Mayo-Wilson, C. [2010]: ‘Causal Conclusions That Flip Repeatedly and

Their Justification’, in P. Grunwald and P. Spirtes (eds), Proceedings of the Twenty-

Sixth Conference on Uncertainty in Artificial Intelligence, pp. 277–86.

Laudan, L. and Leplin, J. [1991]: ‘Empirical Equivalence and Underdetermination’,

Journal of Philosophy, 88, pp. 449–72.

Mayo-Wilson, C. [2011]: ‘The Problem of Piecemeal Induction’, Philosophy of Science,

78, pp. 864–74.

McKay, B. [1989]: ‘On the Shape of a Random Acyclic Digraph’, The Mathematical

Proceedings of the Cambridge Philosophical Society, 106, pp. 459–65.

Pearl, J. [1988]: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference, San Francisco: Morgan Kaufmann.

Pearl, J. [2000]: Causality: Models, Reasoning, and Inference, New York, NY:

Cambridge University Press.

Pearl, J. and Verma, T. [1991]: ‘A Theory of Inferred Causation’, in J. A. Allen, R.

Fikes and E. Sandewall (eds), Principles of Knowledge Representation and Reasoning:

Proceeding of the Second International Conference, San Mateo, CA: Morgan

Kaufmann, pp. 441–52.

Reichenbach, H. [1956]: The Direction of Time, Berkeley: University of Los Angeles

Press.

Shimizu, S., Hoyer, P. O., Hyvärinen, A. and Kerminen, A. J. [2006]: ‘A Linear

Non-Gaussian Acyclic Model for Causal Discovery’, Journal of Machine Learning

Research, 7, pp. 2003–30.

Spirtes, P., Glymour, C. and Scheines, R. [2001]: Causation, Prediction, and Search,

Cambridge, MA: MIT Press.

Stanford, P. K. [2006]: Exceeding Our Grasp: Science, History, and the Problem of

Unconceived Alternatives, New York: Oxford University Press.

Steel, D. [2005]: ‘Indeterminism and the Causal Markov Condition’, The British Journal

for the Philosophy of Science, 56, pp. 3–26.

Steinsky, B. [2004]: ‘Asymptotic Behaviour of the Number of Labelled Essential

Acyclic Digraphs and Labelled Chain Graphs’, Graphs and Combinatorics, 20,

pp. 399–411.

Sweeney, L. [1997]: Description of the software is available online at

<dataprivacylab.org/people/sweeney/artifacts.html>.

Tillman, R. E., Danks, D. and Glymour, C. [2008]: ‘Integrating Locally Learned

Causal Structures with Overlapping Variables’, in D. Koller, D. Schuurmans, Y.

Bengio and L. Bottou (eds), Advances in Neural Information Processing Systems,

pp. 1665–72.

Tillman, R. E. [2009]: ‘Structure Learning with Independent Non-identically

Distributed Data’, in B. Léon and L. Michael (eds), Proceedings of the

Twenty-Sixth International Conference on Machine Learning, Madison, WI:

Omnipress, pp. 1041–48.

Conor Mayo-Wilson248



Tillman, R. E. and Spirtes, P. [2011]: ‘Learning Equivalence Classes of Acyclic Models

with Latent and Selection Variables from Multiple Datasets with Overlapping

Variables’, Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics (AISTATS 2011), 15, pp. 3–15.

van Fraassen, B. C. [1980]: The Scientific Image, Oxford: Oxford University Press.

The Limits of Piecemeal Causal Inference 249




