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Abstract In their classic analyses, Hobbes and Hume argue that offensively violat-
ing a covenant is irrational because the offense ruins one’s reputation. This paper
explores conditions under which reputation alone can enforce covenants. The mem-
bers of a community are modeled as interacting in a Covenant Game repeated over
time. Folk theorems are presented that give conditions under which the Humean strat-
egy of performing in covenants only with those who have never offensively violated
or performed with an offensive violator characterizes an equilibrium of the repeated
Covenant Game. These folk theorems establish that for certain ideal settings Hobbes’
and Hume’s arguments against offensively violating covenants are compelling. How-
ever, these ideal settings presuppose that the community has certain mechanisms that
generate common knowledge of the identities of those with whom one should per-
form. I analyze the results of computer simulations of the interactions in a community
whose members must rely upon private communication alone. The computer simu-
lation data show that in this community, reputation effects cannot effectively deter
members from offensively violating covenants. I conclude that Hobbes’ and Hume’s
warnings against offensive violation are compelling only on condition that the com-
munity is sufficiently structured to generate common knowledge among its members.
I also conclude that even in such structured communities, the Humean strategy is not
the uniquely “correct” policy.
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1 Introduction: the classic reputational justification of keeping promises

A venerable tradition, starting with Plato, maintains that following norms of justice
generally serves one’s self-interest. In Leviathan, Hobbes defends this position against
a particularly severe challenge. Suppose a Foole alleges that sometimes he is better
off by violating a fundamental norm of justice, namely, that one ought to honor the
agreements one makes with others.1

the question is not of promises mutuall, where there is no security of perfor-
mance on either side; as when there is no Civill Power erected over the parties
promising; for such parties are no Covenants: But either where one of the parties
has performed already, or where there is a Power to make him performe; there
is the question whether it be against reason, that is, against the benefit of the
other to performe, or not. (Leviathan 15:5)

The Foole claims that if he enters into a covenant with another who performs her
end of the covenant first or is compelled by some third party to perform, then he
should not perform his end of the covenant. Hobbes does not articulate the Foole’s
rationale for this claim, perhaps because Hobbes thinks this rationale is obvious. In
such circumstances, the Foole receives the benefits promised him by the terms of the
covenant no matter what he does. Consequently, the Foole thinks it would be irratio-
nal for him to honor his commitment, for if he did so he would incur a cost to himself
with no expectation of any further benefit.

Of course, if the Foole has analyzed the situation correctly, then would the other
party to the agreement not replicate the Foole’s reasoning before she is to act, and
then act so as to forestall the Foole’s exploitative conduct? Hume raises this very
point in A Treatise of Human Nature. Hume has us consider the following example:

Your corn is ripe today; mine will be so tomorrow. ‘Tis profitable for us both, that
I shou’d labour with you to-day, and that you shou’d aid me tomorrow. I have
no kindness for you, and know you have as little for me. I will not, therefore,
take any pains on your account; and should I labour with you upon my own
account, in expectation of a return, I know I shou’d be disappointed, and that
I shou’d in vain depend upon your gratitude. Here then I leave you to labour
alone: You treat me in the same manner. The seasons change; and both of us
lose our harvests for want of mutual confidence and security. (Treatise 3.2.5:8)

The farmer whose corn ripens later reasons that if she were to help the other
farmer, then when her corn ripens he would be in the position of Hobbes’ Foole,
having already benefited from her help. He would no longer have anything to gain
from her, so he would not help her, sparing himself the hard labor of a second harvest.
Since she cannot expect the other farmer to return her aid when the time comes, she
will not help when his corn ripens first, and of course the other farmer does not help
her when her corn ripens later.

The problem raised by Hobbes’ Foole and Hume’s farmers suggests that rational,
self-interested agents would never honor their commitments unless forced to by some

1 Citations of passages in Hobbes’ Leviathan and Hume’s A Treatise of Human Nature include chap-
ter or section and paragraph number. In Chapter 15 of Leviathan, Hobbes (1651) actually defines
justice as the keeping of one’s covenants (15:7). In Chapter 14, Hobbes gives a more general definition
of justice as fulfilling all of one’s obligations, a special case of which are the obligations created by
covenants (14:7).
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external authority. Nevertheless, both Hobbes and Hume maintain that self-interested
agents can have good reason to comply with the agreements they make after all, even
if they are not coerced into compliance. For typically, a single interaction like the
commitment problem Hume’s farmers face is embedded in a complex sequence of
social interactions that occur over time. If an agent reasons that she can expect many
opportunities for mutually beneficial cooperation with others in her community, then
by honoring an agreement on one occasion, she indicates to others that they can trust
her to honor future agreements, and so they will make and keep agreements with her
in the future. Consequently, as Hume puts it,

I learn to do a service to another, without bearing him any real kindness; because
I forsee, that he will return my service, in expectation of another of the same
kind, and in order to maintain the same correspondence of good offices with me
or with others. And accordingly, after I have serv’d him, and he is in possession
of the advantage arising from my action, he is induc’d to perform his part, as
foreseeing the consequences of his refusal. (Treatise 3.2.5:9)

What are the consequences of refusing to reciprocate? Such refusal constitutes
what Kavka terms an unexpected unilateral or offensive violation of a covenant (1986,
p. 139). Hobbes and Hume believe that under certain circumstances, failing to honor
a covenant one cannot expect the other parties to honor, or defensively violating the
covenant, is acceptable. But to offensively violate a covenant is to commit an injustice.
Hobbes and Hume give similar warnings against offensive violation. Hume declares
that

When a man says he promises any thing, he in effect expresses a resolution of
performing it; and along with that, by making use of this form of words, subjects
himself to the penalty of never being trusted again in case of failure. (Treatise
3.2.5:10)

In his response to the Foole, Hobbes argues that

He therefore that breaketh his covenant, and consequently declareth that he
thinks he may with reason do so, cannot be received into any society, that unite
themselves for Peace and Defense, but by the errour of them that receive him;
nor when he is received, be retayned in it, without seeing the danger of their
errour; which errours a man cannot reasonably reckon upon as the means of his
security: and therefore if he be left, or cast out of Society, he perisheth; and if
he live in Society, it is by the errours of other men, . . . (Leviathan 15: 5)

One who follows the Foole’s advice and offensively violates a covenant might
enjoy an immediate gain if the others perform as expected. For one then gains the
benefits of the others’ compliance and avoids the costs of one’s own compliance. How-
ever, according to Hobbes and Hume, rational and well-informed agents will never
enter into covenants with one who has ever once exploited others by offensively vio-
lating a covenant. And Hobbes and Hume think that losing all such opportunities
for future benefits of others’ performance in covenants far outweighs any immedi-
ate gain from refusing to reciprocate when others have performed their parts of a
covenant.

This kind of reply to the Foole raises several fundamental puzzles. Some have
rightly pointed out that if Hobbes’ and Hume’s refutations of those who reason like
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the Foole and the farmers are entirely successful, then people do not need a govern-
ment to enforce compliance with covenants with credible threats of force, contrary
to what Hobbes maintains (Hampton, 1986; Kavka, 1986). Hobbes and Hume appar-
ently assume that an individual like the Foole will encounter others who perform
in covenants exactly with those who are in “good standing,” and that offensively
violating a covenant is sufficient reason to be excluded from the set of those in
good standing. Performing one’s ends of covenants with those in good standing and
with no one else is evidently the “correct” policy according to Hume and Hobbes.
But they do not clearly explain what makes this policy “correct.” Moreover, it is
by no means obvious that the members of a community are able to follow such a
conditionally cooperative policy. Hume and Hobbes have little to say regarding the
conditions necessary for a policy of conditional performance to regulate a community
of individuals.

This paper explores conditions under which reputation alone can enforce perfor-
mance in covenants. Section 2 introduces a formal model of interaction in a commu-
nity. The members of a community engage in a Covenant Game that is repeated over
time. Section 3 presents several folk theorems that establish conditions under which
performing in covenants with those who follow Hume’s and Hobbes’ advice consti-
tutes an equilibrium of the repeated Covenant Game. These folk theorems establish
that in certain settings Hobbes’ and Hume’s arguments against offensively violat-
ing covenants are indeed decisive. In particular, they show that a Humean strategy
of performing in covenants only with those who have never offensively violated or
entered into a covenant with an offensive violator characterizes an equilibrium of the
repeated Covenant Game. However, these folk theorems presuppose that the com-
munity has at its disposal certain mechanisms that generate common knowledge.2 In
communities that lack such structures, reputation alone may not give a would-be Foole
good reason to honor covenants. In such communities there are no equilibria of con-
ditional cooperation, precisely because these communities cannot generate common
knowledge. Consequently one cannot establish analytically for such communities that
any pattern of conditional performance is stable, or even more beneficial than follow-
ing the Foole’s advice. I propose to analyze such communities in a different manner,
that is, via computer simulations. Section 4 presents a simple computational model
of a community members must rely upon private communication alone. Computer
simulations of the interactions in this community show that such a community cannot
effectively deter Fooles from offensively violating covenants. The concluding Sect. 5
considers some of the lessons to be drawn from the analysis of the repeated Covenant
Game. I conclude that Hobbes’ and Hume’s warnings against offensive violation are
compelling only on condition that the community is sufficiently structured so as to be
able to generate common knowledge among its members. I also conclude that even
in such structured communities, the Humean strategy is not the uniquely “correct”
policy.

2 Lewis (1969) presented the first analysis of common knowledge. A proposition A is Lewis-common
knowledge among a group of agents if each agent knows that all know A and knows that all can infer
the consequences of this mutual knowledge (Lewis, 1969, pp. 56–57).
Dov Samet is credited with an especially satisfactory characterization of common knowledge: A public
event for a community is some event that cannot occur without all in the community knowing this.
Anything implied by a public event is common knowledge after the public event occurs.
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2 The indefinitely repeated Covenant Game played by community members

We first give a formal description of how individual members in a community interact
in pairwise covenant situations. N = {1, . . . , n} is a set or community of players where
n ≥ 2m, m ∈ N and m ≥ 2. � denotes a set of possible worlds. At each time period
or stage t, one world ω(t) ∈ � obtains at t. At each stage, players will interact in a
Covenant game with assigned counterparts. A description of each possible world at
t includes all of the information relevant to the agents’ decisions and acts at stage t,
including a description of the Covenant game, the assignment, and the beliefs each
player has regarding the counterparts, as in Aumann (1987) and Dekel and Gul (1997).
Each Player i ∈ N has a subjective probability distribution µi(·) over the propositions
in �, a private information partition Hi of �, and an expectation operator Ei(·) based
upon µi(·). At each stage t, a set Nt ⊆ N such that card (Nt) = mt is divisible by 2 is
selected. Each Player i ∈ Nt is matched with a counterpart i(t) ∈ Nt − {i} according
to a bijective random vector Xt : Nt −→ Nt with no fixed points. The sequence (Xt)

is the matching protocol. If Nt = N at each stage, that is, every player is matched at
every stage, then the players are in an ordinary repeated matching game. Note that in
this case we must have n = 2m and mt = n at every stage t. If Player i is unmatched
at some stage t, then at this stage Player i receives a constant noninteraction payoff
u = 0. If Player i is matched at period t, then Player i and his counterpart Player i(t)
play the Covenant Game summarized in Fig. 1.

In this game, parties can enter into a covenant by exchanging promises. Either party
can boycott (B) by refusing to enter into a covenant. If the matched parties do enter
into a covenant, then each can either perform (P) or double-cross (D). If either or
both boycott, then each receives the payoff 0 of working alone, which is strictly worse
than her payoff if both perform. The subgame that results if the players exchange
promises is given in Fig. 2.

Fig. 1 Covenant Game Player i(t)

P D B

Player i        P

D

B

(1,1) (–l,1+g) (0,0)

(1+g, –l) ( – c, –c) (0,0)

(0,0) (0,0) (0,0)

P = perform, D = double-cross, B = boycott

g > 0 , l > c ≥ 0 , g– l < l

Fig. 2 Prisoners’ Dilemma
subgame

Role 2

P D

Role 1 P

D

(1,1) (–l, 1+g)

(1+g, –l) (– c, – c)
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The Fig. 2 game is a Prisoners’ Dilemma. Consequently, the Fig. 1 game is sometimes
called optional Prisoners’ Dilemma or Prisoners’ Dilemma with opting out (Batali &
Kitcher, 1995; Kitcher, 1993). We write ai(t) ∈ {P, D, B} to denote the pure strategy
a Player i matched at stage t selects in the Covenant Game. We will assume that if a
Player i is unmatched at any stage, then at this stage he receives the payoff, u = 0,
same as the payoff when he is matched but his counterpart boycotts him. If c > 0,
(B, B) is the unique Nash equilibrium of the Covenant Game. To see why, suppose that
it is mutual knowledge throughout the community N that each Player i ∈ N paired in
the Covenant Game is Bayesian rational, that is, he acts so as to maximize expected
payoff, and each player knows the structure of the Covenant Game. For each Player
i ∈ N, let

xi1 = µi
[
ai(t)(t) = P

]
,

xi2 = µi
[
ai(t)(t) = D

]
, and

xi3 = µi
[
ai(t)(t) = B

] = 1 − xi1 − xi2.

D weakly dominates P, so any matched Player i rules out opting for P and also rules
out the possibility that counterpart Player i(t) chooses P, that is, xi1 = 0. In the remain-
ing subgame, B can fail to be Player i’s Bayesian rational strategy only if −cxi2 > 0,
which is impossible since c > 0. By a similar argument, if c = 0 then all Nash equilibria
of the Covenant Game are characterized by Player i and Player i(t) both following a
mixed strategy3 over {D, B}.

Now we define formally the strategies that the players in N can follow in the
indefinitely repeated Covenant Game. A generic strategy for Player i is a sequence of
functions fi = (f t

i ) where f t
i : � −→ {P, D, B} and f t

i is Hi-measurable. f = (f1, . . . , fn)

is a generic strategy profile. Si denotes the set of all strategies Player i can follow, and
S = S1 ×· · ·× Sn. At a given stage t, f t

i (ω(t)) ∈ {P, D, B} defines the pure strategy ai(t)
that Player i follows in � at stage t. We stipulate that f t

i (ω(t)) = B if i /∈ Nt in order to
avoid trivial complications. The profile

f t(ω(t)) = (
f t
1(ω(t)), . . . , f t

n(ω(t))
) ∈ {P, D, B}n

is the set of pure strategies (a1(t), . . . , an(t)) the players follow at t. Player i’s expected
payoff at stage t given ω(t) ∈ � is

Ei
(
ui

(
f t (ω (t))

)) =
∑

j �=i

Ei

(
ui

(
f t
i (ω (t)) , f t

j (ω (t))
))

µ[i(t) = j].

Let pi ∈ (0, 1) be Player i’s discount factor. Player i’s overall expected payoff is

Ei
(
ui ◦ f

) =
∞∑

t=1

Ei
(
ui

(
f t (ω (t))

))
pt

i.

A strategy profile f is a correlated equilibrium of the indefinitely repeated Covenant
game if, and only if, for each i ∈ N,

3 That is, Player i and Player i(t) select either D or B according to the outcomes of independent
random experiments.
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Ei
(
ui ◦ f

) ≥ Ei
(
ui ◦ (

f ′
i , f −i

))
for all f ′

i ∈ Si.4

In the sequel we will examine the prospects for reciprocal cooperation among
a community of Bayesian rational players who engage in the Covenant Game when
they meet. Why base the analysis on the repeated Covenant Game rather than the
repeated Prisoners’ Dilemma? The Covenant Game reflects the arguments for keep-
ing promises in the classic works of Hume and Hobbes better than the Prisoners’
Dilemma. Hobbes and Hume argue that offensive violators will be shunned by others,
not that others will then try to exploit them. Shunning is formalized by introducing
the boycott strategy of the Covenant Game, which allows players to ignore those they
encounter. Moreover, community members should be able to identify certain kinds of
offensive violation more easily in the repeated Covenant Game than in the repeated
Prisoners’ Dilemma. In the repeated Prisoners’ Dilemma, equilibria of conditional
cooperation require an exploited player to punish the offensive violator by double-
crossing, at least for a certain number of stages after the violation. In a repeated
Prisoners’ Dilemma between a fixed pair of players, each has no trouble knowing
when to punish because the counterpart is fixed. Matters are far more complicated for
the members of a community of players who are matched with different counterparts
over time. In such a community, if the stage game is the Prisoners’ Dilemma, then
members might have trouble identifying some of offensive violations of a covenant. If,
for instance, one player observes another double-crossing in a given stage of repeated
Prisoners’ Dilemma, she might have trouble determining whether the double-crosser
is offensively violating a covenant, or is merely punishing an offensive violator as
a conditionally cooperative strategy for playing repeated Prisoners’ Dilemma might
require. In the Humean strategies for playing the repeated Covenant Game discussed
below, this problem is avoided to a large extent because punishment always takes
the form of a boycott. In the repeated Covenant Game, double-crossing is always an
offensive violation.

3 Folk theorems

This section presents some basic folk theorems for the indefinitely repeated Cove-
nant Game. These folk theorems establish conditions in repeated covenant situations
where strategies of conditional performance are Bayesian rational and superior to
strategies where one offensively violates. Hence, they partially vindicate Hobbes’ and
Hume’s reputational argument for keeping promises. The results stated in this section
are similar in spirit to the folk theorems proved for repeated Prisoners’ Dilemma
played in a random matching model in Kandori (1992) and Ellison (1994). However,
Kandori and Ellison assume that every player is matched at every period and that an
offensive violation is certain to start a punishment cycle. Moreover, in their models
a player can follow only one of the pure strategies of the Prisoners’ Dilemma at any
given stage. The matching model developed here allows for the possibility that players
follow mixed strategies in the Covenant Game, and does not assume that every player

4 The subscript ‘−i’ is the “jackknife” notation that indicates the results of removing the ith compo-
nent of an ordered n-tuple or n-fold Cartesian product. Here,

(f ′
i , f −i) = (f1, . . . , fi−1, f ′

i , fi+1, . . . , fn).

Aumann (1974, 1987) gave the first precise formulation of correlated equilibrium.
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is matched with a counterpart in every period. The stochastic strategies considered
below also allow for the possibility that an offensive violation starts no punishment
cycle. Note that in the results stated here, the only restriction placed on the matching
protocol is that the probability a Player i ∈ N is matched remains constant over the
stages of play. Finally, readers should be aware that the analysis here differs funda-
mentally from the evolutionary analyses of strategies such as “tit for tat” for playing
repeated Prisoners’ Dilemma developed by authors such as Axelrod (1981, 1984) and
Linster (1992). Such evolutionary analyses focus on how strategies can emerge in
repeated Prisoners’ Dilemma games played over time between fixed pairs of agents.
Here, the members of a community play the Covenant Game when they are matched,
and might at any stage change their partners.

A first folk theorem establishes the set of average payoffs in the indefinitely
repeated Covenant game that can be sustained in an equilibrium. The proofs of
Proposition 1 and of the other results stated in this section are given in Appendix 1.

Proposition 1 Let Nt = N for each period t, let the matching protocol be such that
half of the players lie in the same set NR at each stage and their counterparts lie
in the set NC = N − NR, and let f = (f t) define a sequence of correlated strate-
gies over {P, D, B} × {P, D, B} as follows: � = {ω1, ω2} where x = µi[ω = ω1] and
1 − x = µi[ω = ω2] for all i ∈ N. s : � −→ {P, D} × {P, D} is a map that yields Player
i ∈ NR an expected payoff of uR ∈ (0, 1] and counterpart Player i(j) ∈ NC an expected
payoff of uC ∈ (0, 1]. Then at each stage t,

f t(ω) =
{

s(ω) if all players have followed s(ω) at every stage T < t
B otherwise

.

If

pi ≥ 1 + g − uR

1 + g
for each i ∈ NR

pi ≥ 1 + g − uC

1 + g
for each i ∈ NC

then f is a correlated equilibrium of the indefinitely repeated Covenant Game with this
matching protocol.

Proposition 1 shows us that any point in the convex hull of payoffs of the Covenant
Game such that each component is nonnegative can be sustained in an equilibrium
of the corresponding ordinary indefinitely repeated game. Figure 3 gives the graph of
this set for the special case where g = l = 1 and c = 1

2 .
The equilibrium of Proposition 1 is similar to some of the “contagion” equilibria

of a repeated Prisoners’ Dilemma presented in Kandori (1992). The basic underlying
idea is as follows: The community members are partitioned into two distinct classes.
At each stage every member of the community is matched with a member of the
class other than her own. So long as everyone has always conformed to the strategy
s, each player continues to follow her required end of s and all members of the one
class continue to receive the discounted payoff uR and all members of the other class
continue to receive the discounted payoff uC. But if anyone deviates from s at any
stage, then subsequently everyone always boycotts. Clearly, this equilibrium requires
a rather contrived matching protocol and requires all to punish each other for the
offense of just a single member of the community. Here punishment spreads like
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Fig. 3 Average payoff vectors of the correlated equilibria of the repeated the Covenant Game with
g = l = 1, c = 1

2

an epidemic throughout the community because just one offensive violator in effect
“infects” everyone else.

Proposition 1 show us what kind of equilibria are possible in the indefinitely
repeated Covenant Game. But the equilibria of “good reputation,” if there are any,
should not depend upon unusual matching protocols and should punish only those
who unilaterally deviate from the equilibrium. To construct such a class of equilib-
ria, let us define a σi-trigger strategy for playing the repeated Covenant Game with
matching: At each stage of play, Player i ∈ N follows a mixed strategy σi(ω) for ω ∈ �

over {P, D, B}.5 σi(t) denotes the pure strategy in {P, D, B} specified by σi at stage
t. We assume that each σi assigns positive probabilities to P and D only. The mixed
strategies σ1, . . . , σn are probabilistically independent. Let

αi = µi (σi (t) = P) , 1 − αi = µi (σi (t) = D)

as defined by σi, and let σ = (σ1, . . . , σn). Let

�(i, j) = αiαj + (1 − αi)αj(1 + g) − αi(1 − αj)l − (1 − αi)(1 − αj)c

5 That is, Player i pegs his choice of pure strategy on the results of a random experiment that defines
a random variable σi with outcomes in {P, D, B}.
[163]
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so that at each stage, if each player j ∈ N follows the mixed strategy σj, Player i’s
undiscounted expected payoff in Covenant Game is

Ei (ui (σi, σ−i)) =
∑

j �=i

�(i, j) µ[i(t) = j].

For i ∈ N, define zi : t → {0, 1} by

zi(t) =
{

1 if C(i, t) obtains
0 otherwise

where C(i, 1) obtains for each i ∈ N and for t > 1,

C(i, t) = ∀(T ≤ t − 1)∀(j ∈ N)[(j = i(T) ∧ C(j, T) → ai(T) = σi(T))

∧(j = i(T) ∧ ¬C(j, T) → ai(T) = B)].
In words, a player is a conformist at stage t if she has always followed her mixed
strategy over the first t − 1 stages with other conformists and has always boycotted
any counterpart who is not a conformist. A player becomes a nonconformist if she
ever deviates from her mixed strategy when paired with a conformist or enters into a
covenant with a nonconformist. Note that here Player i must enter into and perform
in a covenant when she is matched with a conformist.6 Player i is also not allowed to
enter into a covenant with a nonconformist. zi(t) is Player i’s “marker,” and zi(t) = 1
if Player i is a conformist and zi(t) = 0 otherwise. Let ω(t) = (z1(t), . . . , zn(t)). Then
Player i’s matching σi-trigger strategy is defined by fσi = (fσi(ω(t))) where

fσ i(ω(t)) =
{

σi if i ∈ Nt and zi(t)(t) = 1
B if i ∈ Nt and zi(t)(t) = 0

.

That is, Player i follows his mixed strategy σi in the stage game if his counterpart
i(t) is a conformist, and otherwise Player i punishes his counterpart by boycotting.

The following result gives conditions under which a profile of σi-trigger strategies
forms an equilibrium of the repeated Covenant Game with matching.

Proposition 2 Let α∗ = min{αi : i ∈ N}, and for i ∈ N let

�∗
i = αiα∗ + (1 − αi)α∗(1 + g) − αi(1 − α∗)l − (1 − αi)(1 − α∗)c.

Let the probability that a given Player i is matched be constant over stages. If xi denotes
the probability that Player i is matched at a given stage and

pi ≥ 1 + g − xi�
∗
i

1 + g
, i ∈ N (1)

then f σ = (fσ1, . . . , fσn) is a correlated equilibrium of the indefinitely repeated Covenant
Game with matching over N.

Proposition 2 is a generalization of the early folk theorem that says that “grim trig-
ger” is an equilibrium of the indefinitely repeated Prisoners’ Dilemma played between
a fixed pair of players, a result first discovered in 1950 by John Nash (Flood, 1958).
For all i ∈ N, �∗

i > 0 when α∗ > αil+c−cαi
1+g−gαi+αil+c−cαi

, so there is always an equilibrium
characterized by the σi-trigger strategies whenever the latter inequality is satisfied for

6 It is possible to define a variant I(i, t) where Player i remains innocent if he boycotts innocent
parties, and to derive results similar to those we discuss here.
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each i ∈ N. One can think of the players in M as the “nastiest” players in the system,
since they double-cross most often against other conformists. The key idea underlying
the proof of Proposition 2 is that following one’s own end of f σ can be a best response
to the others’ strategies even if from a certain stage onward one has the bad luck to be
always matched with the “nastiest” possible counterparts. The equilibrium conditions
assume only that the probability of being matched with some counterpart remains
constant over time. One can identify weaker sufficient conditions for equilibrium
than condition (1) if one places additional restrictions on the matching protocol:

Proposition 3 If Player i’s probability of being matched with a conformist is at least
xi(1+g)

1−g+�∗
i
, then fσi is Player i’s best response to his counterparts.

A special case of the σi-trigger strategy is the Humean strategy, so-called because I
think Hume articulates the supposed consequences of offensive violation more clearly
than does Hobbes: For i ∈ N, define zi : t → {0, 1} by

zi(t) =
{

1 if I(i, t) obtains
0 otherwise

where I(i, l) obtains for each i ∈ N and for t > 1,

I(i, t) = ∀(T ≤ t − 1)∀(j ∈ N)[(j = i(T) ∧ I(j, T) → ai(T) = P)

∧(j = i(T) ∧ ¬I(j, T) → ai(T) = B)].
The definition of I(i, 1) formalizes the idea that a player is innocent at stage t if, and
only if, over the first t − 1 stages she has never failed to perform with an innocent
counterpart and has always boycotted counterparts who are guilty, that is, not inno-
cent. So zi(t) = 1 exactly when Player i is innocent at stage t. Hobbes and Hume
evidently assume in their warnings against offensive violation that innocent individu-
als are sure to perform in covenants with other innocents and shun the guilty, and that
double-crossing even once renders one guilty. Neither say what happens if an innocent
individual who enters into a covenant with a guilty individual, perhaps because this
would be a violation of their assumption. Moreover, neither consider the possibility
that individuals might follow mixed strategies such as the mixed strategies of σi-trig-
ger. This is not surprising since the members of actual communities seldom explicitly
peg their choices on random experiments in covenant situations. The Humean strat-
egy defined here assumes that players follow only pure strategies in a given Covenant
Game and also specifies what happens if an innocent player “slips” and fails to shun a
guilty player. If innocent Player i double-crosses an innocent counterpart, then Player
i becomes guilty, following Hobbes and Hume. If innocent Player i enters into a cov-
enant with a guilty counterpart, then Player i becomes guilty whether he performs or
double-crosses. Intuitively, the community punishes fellow members who succumb to
the temptation to try to profit by dealing with the guilty, no matter how these deals
may turn out. Let ω(t) = (z1(t), . . . , zn(t)). Then Player i’s Humean strategy is defined
by h = (h(ω(t))) where

h(ω(t)) =
{

P if i ∈ Nt and zi(t)(t) = 1
B if i ∈ Nt and zi(t)(t) = 0

.

That is, Player i performs when he is matched in the Covenant Game if he is matched
with an innocent counterpart and boycotts if he is matched with a guilty counterpart.
We immediately get the following
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Corollary 4 Let the probability that a given Player i ∈ N is matched be constant over
stages. If xi denotes the probability that Player i is matched at a given stage and

pi ≥ 1 + g − xi

1 + g
, i ∈ N (1)

then h = (h, . . . , h) is an equilibrium of the indefinitely repeated Covenant Game with
matching over N.

When the players follow the equilibrium characterized by the Humean strategy,
then each fares better than he would fare by offensively violating. This equilibrium
punishes exactly those who are guilty, and any guilty players do strictly worse than the
innocent. So if one’s counterparts follow the Humean strategy, then one had better
not offensively violate.

So far, we have assumed that if a given player is guilty, the rest of the community
is certain to start a punishment cycle where all boycott the guilty player. But suppose
that an offensive violation is discovered by the rest of the community only with prob-
ability q < 1. Then a stochastic Humean strategy h[q] where the players in N punish a
guilty player with probability q can still characterize an equilibrium of the repeated
Covenant Game. This time, for i ∈ N, define wi : t → {0, 1} by

wi(t) =
{

0 if 1Ai(T) = 1 for some T ≤ t
1 otherwise

where Ai(T) implies that

Q(i T) = ∃(j ∈ N)[j = i(t) ∧
((I(j, T) ∧ ai(T) �= P) ∨ (¬I(j, T) ∧ ai(T) �= B))]

and assume that Ei(1Ai(t)|Q(j, T)) = q and Ei(1Ai(t)|¬Q(j, T)) = 0 for each i ∈ N.7

Q(i, T) obtains either if at period T Player i offensively violates a covenant or enters
into a covenant with a guilty counterpart. One can think of the event Ai(t) as Player
i’s offense against the community being “found out” by everyone. If Q(i, T) does
obtain, the offense is “found out” with probability q. Let ω(t) = (w1(t), . . . , wn(t)).
Then Player i’s Humean stochastic q-strategy is defined by h[q] = (h[q](ω(t))) where

h[q](ω(t)) =
{

P if i ∈ Nt and wi(t)(t) = 1
B if i ∈ Nt and wi(t)(t) = 0

.

Proposition 5 Let the probability that a given Player i ∈ N is matched be constant over
stages. If xi denotes the probability that Player i is matched at a given stage and

pi ≥ 1 + g − xi

1 + g − xi + qxi
, i ∈ N (1)

then h[q] = (h[q], . . . , h[q]) is an equilibrium of the indefinitely repeated Covenant
Game with matching over N.

7 1A is the indicator function of the proposition or event A, that is,

1A =
{

1 is A obtains (or A occurs)
0 otherwise .
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We can think of the players hearing a “broadcast” report of a Player i’s guilt at the
time of offense with probability q, which makes Player i’s guilt common knowledge. If
no broadcast occurs, then all continue to cooperate with Player i, including the inno-
cent Player i(t) that Player i exploited at period t. The players in N − {i, i(t)} continue
to cooperate with Player i because they don’t know that Player i is guilty, and Player
i(t) cooperates after the offense because if he were to punish Player i unilaterally, then
the others might hear a “broadcast” report that Player i(t) is guilty. Note that if q = 1,
then (1) reduces to the equilibrium condition of Corollary 4. At the other extreme, if
q = 0, then (1) can never be satisfied, which makes intuitive sense since in this case
no offense is ever “broadcast” so the members of the community never have common
knowledge of who are guilty.

Equilibria defined by Humean strategies of conditional cooperation exist for the
repeated Covenant game. However, we must not slide to the conclusion that players
in the repeated Covenant game will follow one of these Humean equilibria. Prop-
osition 1 shows that even if we assume that the players eventually settle into some
equilibrium, this equilibrium need not be an equilibrium of conditional cooperation.
The players might settle into an equilibrium all follow the pure Humean strategy or
a q-stochastic Humean strategy, or the equilibrium where all boycott always, or some
intermediate equilibrium where all perform some of the time and boycott some of the
time. Proposition 2 shows that the players might even follow an equilibrium where
some exploit others by sometimes double-crossing when their counterparts perform.

The conditionally cooperative strategies described in this section crucially assume
that all know who bear a guilty “label” and who bear an innocent “label.” The play-
ers can know this if some reliable mechanism or institution publicly announces or
“broadcasts” the identities of guilty players to the entire community. If the broad-
casting mechanism never fails to report the identities of the guilty, such a broadcast
renders the identities of the guilty and the innocent common knowledge among the
community. Then its members can follow an equilibrium where each innocent member
performs in covenants exactly when she is matched with an innocent counterpart. This
is the lesson to be drawn from Proposition 2 and Corollary 4. If the mechanism fails
sometimes, so that sometimes offensive violators “slip through the cracks” and are
not identified as guilty, then it is still possible for the community to follow an equilib-
rium of conditional cooperation based upon one of the stochastic Humean strategies
discussed above. This equilibrium will yield innocent community members a some-
what lower expected payoff than the Humean equilibrium of a fullproof broadcasting
mechanism, because sometimes an innocent community member will be exploited
and yet no punishment cycle begins. Nevertheless, so long as the probability 1 − q of
broadcast failure is sufficiently low, an innocent community member still expects to
fare better at the equilibrium of the q-stochastic Humean strategy than a Foole can
expect to fare. This is the lesson to be drawn from Proposition 5.

Plainly, the cooperation in the Humean-type equilibria can unravel if the players are
prone to the sort of mistakes or “trembles” in executing their strategies that are used to
characterize equilibrium refinements. For instance, if the players begin at the equilib-
rium h of the basic Humean strategy and at each stage t, a given Player i deviates from
h with any positive probability εi, then in time with probability one everyone in the
community will be boycotting everyone else. So one might consider the possibility of
reputational equilibria that are based upon strategies that are more forgiving than the
Humean strategy, and that allow an offensive violator to eventually regain innocence.
Kandori (1992) and Vanderschraaf (2005) construct such “forgiving” equilibria. These
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equilibria rely upon even more extensive knowledge requirements than the σi-trigger
and the Humean equilibria described here. In a “forgiving” equilibrium community
members must know not only who are guilty, but when they became guilty, so that
they will know when to stop boycotting. Cooperation in a community of Humeans
can also unravel if the reporting institution broadcasts erroneous reports of certain
players’ guilt, either by mistake or because this institution is corrupt. One might try to
construct reputational equilibria that are more robust against these kinds of errors by
adding additional structure to the base game. Millgrom, North, and Weingast (1990)
take this approach in their analysis of merchant trade in 14th century Europe. In
their model, individual traders at a fair may present complaints of being cheated to
a judge, who for a fee renders a judgment of guilt or innocence. If judged guilty, a
merchant must either make restitution as determined by the judge or in effect be
excluded from future trading at this fair. Hill (2004) shows that the cooperation in the
Millgrom–North–Weingast model is robust with respect to mistakes on the part of the
judge so long as the error rate is sufficiently low. Similarly, one can construct Humean
reputation equilibria that are more robust to trembles and false reports by introduc-
ing more structure to the model, in effect extending the interaction of the Covenant
Game into a more complex game where players have to defer to the judgments of
a central agent and support this agent at some personal cost. This is to take steps
much like those that institute the Leviathan that Hobbes claims is generally necessary
to enforce compliance with covenants, except that it is the threat of being shunned
following a guilty judgment rather than the coercive power the judge may have at his
command that does the work of enforcement. However, in the next section I wish to
explore a different possibility. The reputational equilibria developed in this section
tacitly presuppose that some formal mechanism exists that can generate common
knowledge among community members. Below, I will consider the possibility that
performance in covenants can be enforced by informal communication only.

4 Decentralized reputation effects

Suppose that no mechanism or institution exists in the community that can generate
common knowledge among its members. More specifically, the community lacks any
structures that would enable anyone to make public announcements, the immediate
generators of common knowledge. A multitude of people in their “naturall condi-
tion” of political freedom as Hobbes describes them would be such a community
(Leviathan 13:9).8 Can such a community sustain a norm of conditional cooperation
that excludes offensive violators from covenants over time? The members in such a
community cannot make public announcements, but perhaps they can at least spread
information via informal private communication. Perhaps performance in covenants
can be enforced by gossip. More precisely, perhaps the members of a community
can exchange information when they interact, with the result that the identities of
offensive violators in the community are spread through the community “grapevine.”

8 Of course, Hobbes famously goes farther and claims that the people in their naturall condition will
inevitably end up in a kind of war with each other. But in the exchange with the Foole in Leviathan
15, Hobbes argues that one should not offensively violate covenants on reputational grounds alone.
I follow Hampton (1986, pp. 64–66), Kavka (1986, §4.3) and Curley (1994, pp. xxvi–xxviii) in main-
taining that Hobbes is considering the possibility that reputation alone can enforce performance in
covenants even in our naturall condition.
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Now Humeans still perform in covenants with those counterparts they believe to be
innocent and boycott those they believe to be guilty, but they have to rely upon their
individual experiences and the information they receive from other counterparts to
form their beliefs. Such a system will generally not be in equilibrium if any offensive
violators are present. For if a member of the community offensively violates a cove-
nant, the exploited party will know that the violator is guilty but others in the system
may not know this, because by assumption nothing in the community serves as an
authority that can make innocence or guilt common knowledge.

Consequently, it is not possible to establish any analytical results for such a commu-
nity of individuals who can communicate only privately analogous to the folk theorems
of Sect. 3. But perhaps one can learn something of the properties of such a system by
analyzing this system computationally. Gaylord and D’Andria (1998) present an early
computational analysis of the spread of bad reputation. While I believe that their
specific model is too crude to give much insight into how behavior in repeated Cove-
nant Games might evolve in real human communities, they are pioneers in the use of
computational models to analyze interactions in a society. Here is a description of the
Gaylord–D’Andria model, which I will modify later in this section: Let the members
of a community occupy positions in an r × r lattice whose edges “wrap around,” so
that their territory is topologically equivalent to a torus. At each stage, a member
chooses at random a direction, north, south, east or west, in the cell he occupies. If
the cell this member faces is empty, the member migrates into this new cell. If the cell
this member faces is occupied by a second member whose direction faces the cell of
the first, they are matched and they play the Covenant Game. Otherwise this member
does not interact and gets the payoff of working alone. Figure 4 depicts such a lattice
where r = 50, so that there are 2,500 cells in total.

In this lattice, 70% of the cells are occupied. Half of the community members are
Humeans, who when matched perform with counterparts they believe to be innocent

Fig. 4 50 × 50 Lattice of
players who play the repeated
the Covenant Game with
random matching
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Fig. 5 Average accumulated payoffs of Humeans and naive Fooles over 500 stages of play, g =
c = 1, l = 2

and boycott counterparts they believe to be guilty. The other half are Fooles who are
willing to offensively violate a covenant. The parameters of this particular lattice are
identical to those Gaylord and D’Andria use in their analysis. Gaylord and D’Andria
have the agents in this system play the Covenant Game when they are matched
with parameters g = c = 1 and l = 2. They assume that a Foole always chooses D if
matched unless the counterpart has double-crossed this Foole before, in which case the
Foole chooses B. A Humean always chooses B if the counterpart is on this Humean’s
“blacklist,” and otherwise the Humean chooses P. If the Humean does enter into a
Covenant, this Humean and the counterpart exchange blacklists. The counterpart is
added to the Humean’s blacklist as well only if this counterpart chooses D, which is
an offensive violation. Figure 5 shows the average aggregate payoffs of the Humeans
and the average aggregate payoffs of the Fooles over a run of 500 stages of plays.

The results in this figure replicate Gaylord and D’Andria’s findings in their com-
putational study (1998). They appear to give powerful evidence that a Humean-type
policy of performing in covenants with those one has not learned to be guilty through
personal experience or informal private information exchange is far superior to a pol-
icy of following the Foole’s advice and offensively violating covenants when one can.
In this model, a bad reputation spreads rapidly throughout the community, leading
the Fooles to fare very poorly compared with their Humean counterparts in terms of
average aggregate payoff.

Nevertheless, the relative prospects of Fooles and Humeans change dramatically if
the Fooles are even slightly more sophisticated than those of the Gaylord–D’Andria
model. In their model, only the identities of actual offensive violations are ever added
to a player’s blacklist. In effect, all agents in the system are assumed to tell only the
truth always. Suppose that a Foole is willing to lie as well as double-cross in a covenant.
Specifically, suppose a Foole adds the identity of a counterpart he double-crosses to
his own blacklist. This Foole’s motivation for lying about those he exploits is sim-
ple: If the Foole gives false information to others who might be Humeans, they may
become unwilling to interact with those innocent victims the Foole has added to his
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Fig. 6 Average accumulated payoffs of Humeans and more sophisticated Fooles over 500 stages of
play, g = c = 1, l = 2

own blacklist and therefore will not learn that the Foole is on their blacklists. Such
Humeans might be especially willing to believe a Foole who does not double-cross
all of the time. If the Foole double-crosses only occasionally, then the counterparts
he does not exploit have no reason as of yet to believe that this Foole is not another
Humean like themselves. Figure 6 summarizes the results of a run of 500 stages of
repeated Covenant Game with random matching, where now the Fooles adopt a more
complex strategy than simply double-crossing all of the time.

As in the previous simulation, here 70% of the lattice is occupied with agents. Again
half the agents are Humeans and half are Fooles. The Humeans follow the same strat-
egy as before. But now Fooles double-cross counterparts not on their blacklists at
random with probability 1

3 . If a Foole double-crosses a Humean, the Foole adds the
identity of this Humean to his blacklist and spreads this identity to the blacklists of all
who interact with him. Figure 6 plots the average aggregate payoffs of the Humeans
and the average aggregate payoffs of the Fooles over time. As Fig. 6 shows, now Fooles
fare better than Humeans on average over all stages of play. The Fooles have turned
the tables on the Humeans merely by adopting a slightly more complex strategy than
simply double-crossing any counterpart willing to covenant.

The results of additional computer experiments simulating the interactions of
Humeans and Fooles in repeated Covenant Games are summarized in Appendix
2. These experiments show that the average prospects for Humeans, “naive” Fooles
who always double-cross and always tell the truth, and more sophisticated Fooles
who do not always double-cross and who lie about their victims can vary according to
some of the parameters of the model such as relative portions of Fooles and Humeans
in the population.9 To be sure, the results of these specific computer experiments
barely scratch the surface of what one might learn from running simulations on more

9 Gaylord and D’ Andria present the results of only one computer experiment to test their hypothesis
that Humeans will on average fare better than Fooles, the experiment described in this section. Below
I show by example that Fooles can do better on average even if they are “naive” and always tell the
truth and always double-cross, as Gaylord and D’Andria assume.
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complex models of a society that more closely mimic the conditions one would ex-
pect to find in an actual human community whose members must rely upon gossip
to form their expectations regarding their counterparts. For example, in the models
considered here each individual follows exactly one of two strategies all of the time,
that is, each is either a Humean or one kind of Foole. More realistic models might
allow for the presence of more than two strategies in the population, including the
Humean strategy, a forgiving strategy, a naive Foole’s strategy and a variety of more
complex Foole’s strategies. More realistic models might also allow for more complex
migration patterns and might also allow some individuals to leave the system or “die”
and some newcomers to enter the system. Future work on computer simulations of
society may help philosophers and social scientists better understand the specific con-
ditions under which private communication alone can enable Humeans to fare better
than Fooles. Still, even the very simple models considered here yield an important
lesson: In some of the simplest of communities whose members can communicate only
privately, Fooles can fare better on average than Humeans. So Hobbes’ and Hume’s
warnings against offensively violating one’s covenants are not compelling in general.

5 Conclusion

At the start of this paper I hinted that the classic argument for keeping promises
presented by Hobbes and Hume fails to address a fundamental question: Can the
members of a community follow a policy of performing in covenants made with inno-
cent members and boycotting guilty members? Not surprisingly, the answer to this
question is contingent upon the circumstances of this community. The folk theorems
for the indefinitely repeated Covenant Game show that a variety of equilibria where
players perform with the innocent and boycott the guilty are possible. In a community
that follows such a Humean-type equilibrium, would-be Fooles do have a decisive
reason to perform in covenants. The would-be Fooles should perform in order to
maintain their reputation, which in the folk theorems is summarized by the inno-
cence or guilt “marker.” But in order to sustain any such Humean-type equilibrium of
conditional performance, the community requires an institution that can provide its
members the information they require in order to follow their parts of the equilibrium.
Equilibria based upon reputation are viable when the identities of the guilty and the
innocent are common knowledge, or at the very least that the identities of the guilty
and the innocent are made common knowledge with high probability. Such common
knowledge can exist in communities that have a reliable judge together with a reli-
able communication network. Reputation alone can enforce good conduct among the
members of a clan who meet regularly and receive information from certain desig-
nated members, or a church with truthful ministers, or in a larger civil society with a
reliable broadcasting network.

But in a community with no such structures, reputation alone is far less likely to
enforce good conduct. The computational models considered above show that Fooles
can fare better than Humeans in a community that must rely upon private informa-
tion or “gossip” only to spread information. So the key to reputational enforcement
of covenants is common knowledge, which presupposes mechanisms that can make
certain information public. This conclusion dovetails with Hobbes’ analysis of life in
the State of Nature. Hobbes expressly denies that people in a State of Nature can
have any of the means such as navigation or letters that in civil society facilitate the
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transmission of knowledge (Leviathan 13:9). So Hobbes has the means available to
argue that his rebuttal to the Foole is consistent with his claims that civil society is
a necessary condition for the rationality of forming and keeping covenants. On the
other hand, such a civil society might not need not enforce covenants with threats
of active punishment by the government, as Hobbes supposes. Perhaps all that is
required is that the civil society has an institution that disseminates the information
that sustains reputational equilibria.

One might conclude that the real lesson of Hobbes’ and Hume’s reputational
defense of performing in covenants is that offensive violation is not rational when one
resides in an ideal, or near-ideal, community where all, or at least most, are rational
and have the common knowledge necessary to sustain a Humean-type equilibrium. If
only we all lived in a community where all, or nearly all, reason “correctly,” performing
in covenants exactly with those others who reason “correctly” and boycotting those
who follow the Foole’s advice, then preserving one’s reputation preservation really
would give each member of the community sufficient reason to always perform in
covenants. Since we in fact live in communities where not all reason “correctly” and
one cannot easily distinguish the Fooles from the Humeans, we need a government
with punishment powers in order to enforce covenants, after all.

However, this argument is too quick. In fact, it does not follow that it is never
rational to offensively violate a covenant even if everyone in the community is rational
and all have the common knowledge needed to distinguish the guilty from the inno-
cent. As the folk theorems of Sect. 3 show, there are equilibria of the indefinitely
repeated Covenant Game where some of the players double-cross others some of the
time. In these equilibria, those who are occasionally exploited do not try to punish the
offensive violators by boycotting because the costs of starting a punishment cycle are
even greater than tolerating the occasional double-cross. These equilibria can even
allow some of the community members to achieve greater payoffs by occasionally
double-crossing than all would achieve by following a Humean-type equilibrium. So
it does not follow that the members of an ideal community will settle into a pattern of
always performing in the covenants they make as a consequence of their rationality
and common knowledge alone. The analysis of the repeated Covenant Game yields a
rather different lesson: Rationality alone does not explain reciprocal cooperation.10

Appendix 1: Proofs of the folk theorems

Proof of Proposition 1 Given i ∈ NR, we have

Ei
(
u ◦ f

) =
∞∑

t=1

Ei (ui (S (ω))) pt
i

=
∞∑

t=1

uR · pt
i. (1)

10 Several other authors draw similar lessons in complimentary studies of the social contract
(Binmore, 1994, 1998; Skyrms, 1996, 1998; Sugden, 1986). These authors focus their attention on
problems of fair division and property acquisition, and conclude that norms of fair division and
property rights must be the result of cultural evolution rather than rationality alone.
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Now consider any strategy f ′
i where Player i deviates from f . Let T0 be the first stage

such that f ′
i (ω(T0)) �= f (ω(T0)). Then

Ei
(
ui

(
f ′
i , f −i

)) ≤
⎛

⎝
T0−1∑

t=1

uR · pt
i

⎞

⎠ + (1 + g) · pT0
i (2)

because (i) at stage T0 Player i gains at most the discounted gain (1+g)pT0
i of exploit-

ing Player i(T0), and (ii) at each subsequent stage t > T0, Player i receives 0 because
now all players in NC always boycott. By (1) and (2), Ei(ui ◦ f ) ≥ Ei(ui(f ′

i , f −i)) when

uRpT0
i

1 − pi
=

∞∑

t=T0

uRpt
i ≥ (1 + g) pT0

i

uR
1−pi

≥ 1 + g (3)

and (3) is satisfied when

pi ≥ 1 + g − uR

1 + g
.

The argument for i ∈ NC is similar. ��

Proof of Proposition 2 Let xi = ∑

j �=i
µi[i(t) = j] = µi[i(t) ∈ Nt] and 1 − xi = µi[i(t) /∈

Nt], that is, xi is Player i’s probability of being matched. If xi = 0 then Player i is
never matched and hence cannot deviate from f σ . For the remainder of the proof we
assume that xi > 0 so that Player i actually plays the Covenant Game at each stage
with positive probability. Let M = {j ∈ N : αj = α∗}. Note that for each pair i, j ∈ N,

�(i, j) ≥ �∗
i . (2)

Given i ∈ N, we have

Ei
(
u ◦ f σ

) =
∞∑

t=1

Ei (ui (σ )) pt
i

=
∞∑

t=1

⎛

⎝
∑

j �=i

�(i, j)µi
[
i (t) = j

]
⎞

⎠ · pt
i. (3)

Now consider any strategy f ′
i where Player i deviates from the sequence (fσi(ω(t))).

Let T0 be the first stage such that f ′
i (ω(T0)) �= fσi(ω(T0)). Then

Ei

(
ui

(
f ′
i , f σ−1

))
≤

⎛

⎝
T0−1∑

t=1

⎛

⎝
∑

j �=i

�(i, j) µi
[
i (t) = j

]
⎞

⎠ · pt
i

⎞

⎠ + (1 + g) pT0
i (4)

because (i) if Player i deviates from f σ for the first time at t = T0, then at stage T0

he will net at most the discounted gain (1 + g)pT0
i of exploiting Player i(T0), and (ii)

at each subsequent stage t > T0 Player i receives 0 because at each of these stages
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either Player i is unmatched and he receives the 0 payoff of working alone or Player
i’s counterpart i(t) boycotts. By (2) and (3), we also have

Ei
(
ui ◦ f σ

) ≥
T0−1∑

t=1

⎛

⎝
∑

j �=i

�(i, j) µi
[
i (t) = j

]
⎞

⎠ · pt
i +

∞∑

t=T0

xi�
∗
i pt

i (5)

because the right member of (5) is Player i’s expected payoff if, starting at stage T0,
whenever he is matched he is always paired with counterparts in M. By (4) and (5),
Ei(ui ◦ f σ ) ≥ Ei(ui(f ′

i , f σ−i)) when

xi�
∗
i pT0

i

1 − pi
=

∞∑

t=T0

xi�
∗
i pt

i ≥ (1 + g) pT0
i

or
xi�

∗
i

1 − pi
≥ 1 + g (6)

and (6) is satisfied when

pi ≥ 1 + g − xi�
∗
i

1 + g
.

��
Proof of Proposition 3 Let

yi1 (T) =
∑

j �=i

µi
[
i (t) = j ∧ C (j, T)

]
, and

yi2 (T) =
∑

j �=i

µi
[
i (t) = j ∧ ¬C (j, T)

]
.

By hypothesis, yi1(T)+yi2(T) = xi. Following the notation in the proof of Proposition
2, let f ′

i be any deviation from fσi and let T0 be the first stage where f ′
i �= fσi . Let f �−i

denote the profile of strategies Player i’s counterparts follow. Then

Ei
(
u

(
fσ i, f �−i

)) =
∞∑

t=1

⎛

⎝
∑

j �=i

�(i, j) µi
[
i (t) = j ∧ C (j, T)

]
⎞

⎠ · pt
i

≥
T0−1∑

t=1

⎛

⎝
∑

j �=i

�(i, j) µi
[
i (t) = j ∧ C (j, T)

]
⎞

⎠ · pt
i +

∞∑

t=T0

yi1 (T) �∗
i pt

i

because Player i gets the positive expected payoff of following his part of a mixed
strategy profile in a single Covenant Game with the conformists he meets and gets
the 0 payoff of boycotting the noncomformists he meets or being unmatched. On the
other hand,

Ei
(
u

(
f ′
i , f �−i

)) =
∞∑

t=1

⎛

⎝
∑

j �=i

�(i, j) µi
[
i (t) = j ∧ C (j, T)

]
⎞

⎠ · pt
i

≥
T0−1∑

t=1

⎛

⎝
∑

j �=i

�(i, j) µi
[
i (t) = j ∧ C (j, T)

]
⎞

⎠ · pt
i +

∞∑

t=T0

yi2 (T) (1 + g) pt
i
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because for each stage t > T0, the conformists boycott Player i so the best Player i can
do is to exploit every nonconformist he meets, assuming each of these nonconformists
follows P and Player i then follows D. So fσi is Player i’s best response if

∞∑

t=T0

yi1 (T) �∗
i pt

i >

∞∑

t=T0

yi2 (T) (1 + g) pt
i

or

yi1 (T) �∗
i > yi2 (T) (1 + g) = (xi − yi1 (T)) (1 + g)

and solving for yi1(T) we get

yi1 (T) >
xi (1 + g)

1 − g + �∗
i

. ��

Proof of Corollary 4 The Humean strategy is the σi-trigger strategy with αi = 1 for
every i ∈ N. Hence if each player follows h, �∗

i = 1 and the equilibrium condition (1)
follows from the proof of Proposition 2. ��
Proof of Proposition 5 As before, let xi = ∑

j �=i
ui[i(t) = j], so that

Ei
(
ui

(
h

[
q
]
(t)

)) = xi.

Again, the interesting case is where xi > 0. Let f ′
i be such that Player i deviates from the

sequence (h[q](ω(t))), and let T0 be the first stage such that f ′
i (ω(T0)) �= h[q](ω(T0)).

Then we have two cases to consider:
Case i. If f ′

i (ω(T0)) = B, then

Ei

(
ui

(
f ′
i , h

[
q
]
−i

))
=

T0−1∑

t=1

xipt
i + 0 · pT0

i + (1 − q) ·
∞∑

t=T0+1

xipt
i

because Player i follows B against Player i(T0) at stage t = T0 and gets the discounted
payoff 0 ·pT0

i of boycotting Player i(T0), and with probability 1−q, in each subsequent
stage t > T0, Player i will gain 1 · pt

i when he is matched. Note that

∞∑

t=1

xipt
i >

T0−1∑

t=1

xipt
i + (1 − q) ·

∞∑

t=T0+1

xipt
i

so in this case, Ei(ui ◦ h[q]) > Ei(ui(f ′
i , h[q]−i)) for any positive value of pi.

Case ii. If f ′
i (ω(T0)) = D, then

Ei

(
ui

(
f ′
i , h

[
q
]
−i

))
=

T0−1∑

t=1

xipt
i + (1 + g) · pT0

i + (1 − q) ·
∞∑

t=T0+1

xipt
i

because Player i follows D against Player i(T0) at stage t = T0, then at this stage
he will net the discounted gain (1 + g)pT0

i of exploiting Player i(T0), and for t > T0,
Player i gets the payoffs of cooperation with probability 1 − q. So

Ei
(
ui ◦ h

[
q
]) ≥ Ei

(
ui

(
f ′
i , h

[
q
]
−i

))
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when
∞∑

t=T0

xipt
i ≥ (1 + g) · pT0

i + (1 − q) ·
∞∑

t=T0+1

xipt
i

that is,

xipT0
i +

∞∑

t=T0+1

xipt
i ≥ (1 + g) · pT0

i + (1 − q) ·
∞∑

t=T0+1

xipt
i

or

xi +
∞∑

t=1

xipt
i ≥ (1 + g) + (1 − q) ·

∞∑

t=1

xipt
i. (1)

(1) is equivalent to

qxi · pi

1 − pi
= qxi ·

∞∑

t=1

pt
i ≥ 1 + g − xi (2)

and (2) is satisfied when

pi ≥ 1 + g − xi

1 + g − xi + qxi
. ��

Appendix 2: Additional computer experiments

As noted in Sect. 4, the computer simulation summarized by Fig. 5 replicates the
simulation reviewed in Gaylord and D’Andria (1998). Gaylord and D’Andria find
that, given the parameters they input into their model, Humeans consistently do
better on average than to naive Fooles. The Humeans also accumulate a steadily
increasing aggregate average payoff, while the Fooles’ aggregate average payoff grad-
ually declines. The computer simulation summarized by Fig. 6 uses exactly the same
parameters Gaylord and D’Andria use in their simulation, and runs the system over
500 stages of play, same as in Gaylord’s and D’Andria’s simulation. Again, the only
difference is that the Fooles now double-cross at random 1

3 of the time and include
the identities of their victims on their blacklists, so that their victims end up on other
Humeans’ blacklists even though they are innocent. In this simulation, it is the Fooles
who consistently do better on average than the Humeans. Both the Humeans’ and
the Fooles’ aggregate average payoffs slowly increase over the 500 stages, but at
every stage the aggregate average payoffs of the Fooles is strictly greater that of the
Humeans.

This appendix summarizes some additional computer experiments. The simulator
programs were coded and run in Mathematica 5.2 and extend the simulator program
that Gaylord and D’Andria made publicly available prior to publishing their study
Simulating Society (1998). In each of these additional experiments, individuals in the
population again migrate in a 50 × 50 torus according to the rules described in Sect. 4,
but this time do so over 1,000 cycles of play in order to better detect long term trends
in the population. The Covenant Game payoffs are set by g = c = 1 and l = 2.

[177]



190 Synthese (2007) 157:167–195

Figure A1 summarizes a run of 1,000 stages where the Fooles always double-cross
and never lie, as was the case in Gaylord and D’Andria’s original model. However,
this time the ratio of Fooles to Humeans is no longer equal. Specifically, here 95%
of the population are Fooles. Note that even over 1,000 stages, the average aggregate
payoff of the Humeans is still lower than of the Fooles. So the Humean strategy is not
necessarily better than the naive Foole’s strategy even in Gaylord’s and D’Andrea’s
original model. This lends support to a rebuttal the Foole might have raised against
Hobbes’ original argument against offensive violation: If most in the population are
Fooles, and not Humeans as Hobbes and Hume apparently suppose, then the Foole’s
strategy can be the better strategy after all.

Figures A2–A10 summarize experiments that simulate populations where some in
the population are Humeans and others are Humeans who offensively violate only
some of the time and who spread false information about those they exploit to those
they do not exploit by adding the identities of their victims to the blacklists they share
with others. These experiments compare the relative effectiveness of the Humean and

Fig. A1 Average accumulated payoffs of Humeans and naive Fooles over 1,000 stages of play.
Population Density 0.7, Percentage of Fooles 95, Defection Rate 1

Fig. A2 Average accumulated payoffs of Humeans and complex Fooles over 1,000 stages of play.
Population Density 0.7, Percentage of Fooles 50, Defection Rate 1

3
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the Foole’s strategies in terms of aggregate average payoff. Figures A2–A4 summa-
rize experiments where Humeans and Fooles who offensively violate 1

3 of the time
are equally represented and the population density varies. In each case, the Fooles
always do better over all 1000 stages than do the Humeans, although it appears that
the Fooles’ relative advantage in terms of average aggregate payoff increases as the
population density lowers. In the experiments Figs. A5–A7 summarize, Humeans and
Fooles are again equally represented but now the rates of offensive violation of the
more complex Foole’s strategy vary. As the rates of offensive violation increase, the
relative advantage of the Foole’s strategy decreases. Figure A7 shows that if the Fooles
double-cross 3

4 of the time, then by the 600th stage they no longer do better on aver-
age than do the Humeans, although their average aggregate payoff does not lag far
from that of the Humeans even at the 1,000th stage. Evidently if Fooles double-cross
too frequently, then their strategy too closely approximates that of the naive Foole

Fig. A3 Average accumulated payoffs of Humeans and complex Fooles over 1,000 stages of play.
Population Density 0.5, Percentage of Fooles 50, Defection Rate 1

3

Fig. A4 Average accumulated payoffs of Humeans and complex Fooles over 1,000 stages of play.
Population Density 0.3, Percentage of Fooles 50, Defection Rate 1

3
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Fig. A5 Average accumulated payoffs of Humeans and complex Fooles over 1,000 stages of play.
Population Density 0.5, Percentage of Fooles 50, Defection Rate 1

2

Fig. A6 Average accumulated payoffs of Humeans and complex Fooles over 1,000 stages of play.
Population Density 0.7, Percentage of Fooles 50, Defection Rate 2

3

who always double-crosses and they lose the advantage of the more complex Foole’s
strategy. In the experiments Figs. A8 and A9 summarize, the Fooles offensively violate
1
3 of the time once more, but now the percentages of Fooles in the population vary.
Figure A8 summarizes an experiment where 3

4 of the population are Humeans. In
the beginning, the Fooles do better on average but gradually the Humeans’ average
aggregate payoff overtakes that of the Fooles. This finding is a confirming instance
Hobbes’ and Hume’s claim that following the Foole’s advice is against one’s self-inter-
est, on condition that most of the population follow the Humean strategy. Figure A9
summarizes an experiment where now 3

4 of the population are Fooles. Now the Hu-
means not only always do worse on average than do the Fooles, but the average
aggregate payoff of the Humeans is always negative and steadily decreases while that
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Fig. A7 Average accumulated payoffs of Humeans and complex Fooles over 1,000 stages of play.
Population Density 0.7, Percentage of Fooles 50, Defection Rate 3

4

Fig. A8 Average accumulated payoffs of Humeans and complex Fooles over 1,000 stages of play.
Population Density 0.7, Percentage of Fooles 25, Defection Rate 1

3

of the Fooles is always positive and steadily increases. This suggests that the Foole’s
reasoning is right when most of the population follow a strategy similar to the strategy
he endorses, rather than the strategy Hobbes and Hume endorse. Finally, Fig. A10
summarizes an experiment where the Fooles double-cross 3

4 of the time and form 9
10

of the population. Unlike Fig. A7 the case where the Humeans and the Fooles are
equally represented, here the Fooles always do better on average than the Humeans,
and their relative advantage grows over time. This final experiment suggests that there
is no uniquely “best” complex Foole’s strategy, since double-crossing 3

4 of the time
“beats” the Humean strategy in terms of average aggregate payoff when 9

10 of the
population follow this strategy but “loses” when only 1

2 the population follow this
strategy. Not surprisingly, the best strategy to adopt, in terms of maximizing average
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Fig. A9 Average accumulated payoffs of Humeans and complex Fooles over 1,000 stages of play.
Population Density 0.7, Percentage of Fooles 75, Defection Rate 1

3

Fig. A10 Average accumulated payoffs of Humeans and complex Fooles over 1,000 stages of play.
Population Density 0.7, Percentage of Fooles 90, Defection Rate 3

4

aggregate payoff, will vary according to the initial conditions of the population. This
underscores the claim in Sect. 5 that the best strategy to adopt in repeated covenant
situations depends upon the contingent circumstances of the population.
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