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Abstract
Influence theory is a systematic study of formalmodels of the communicative influence
of one person or group of people on another person or group. In that sense influence
theory is an overarching philosophical discipline that includes aspects of decision
theory and game theory as sub-disciplines as well as established models of de facto
segregation, cultural change, opinion polarization, and epistemic networks. What we
offer here is a structured outline of formal results that have been scattered across a range
of disciplinary contexts frommathematics, physics and computer science to economics
and political science, supplemented with a number of new models, emphasizing their
place within the philosophical framework of a general theory of influence. What such
an outline offers, we propose, is the prospect of new and important cross-fertilizations
and expansions in formal attempts to model the diverse patterns of communicative
influence.

Keywords Influence · Opinion dynamics · Communication · Modeling ·
Undecidability

1 Introduction

Fundamentally related at a deep philosophical level are bits and pieces of results and
explorations that have been scattered across a range of diverse disciplines: economics,
sociology, social psychology, epidemiology, physics, political science, computer sci-
ence, mathematics, and complex systems. When systematically considered, we will
argue, it becomes clear that these can be profitably considered together and pursued
as parts of a unified philosophical sub-discipline: influence theory.
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Influence theory canprofitably be contrastedwith inference theory. Inference theory,
commonly thought of as including logic, examines how one fact or body of facts (the
premises) require or obstructs accepting another (the conclusion). Influence theory
relates to a different sector of information management. It addresses the broader,
statistical issue of how one exponent’s acceptance or rejection of certain factual claims
impinges on the situation of others. Standard information management addresses the
substantive relations of the factual claims themselves. Influence theory addresses the
implication for the facts that are exerted via the relationships among their exponents.
Both deal with the credentials among bodies of information, in the one case on the
basis of substantive considerations regarding assertions, and on the other on the basis of
relationship considerations regarding the assertors. Both fact-relations and exponent-
relations bear upon acceptability but form profoundly different angles of approach.

Influence theory in the sense we are most immediately concerned with it is the
study of formal models of the communicative influence of one person or group of
people on another person or group. Aspects of influence theory are clearly relevant to
contemporary social and political questions regarding the spread of information and
misinformation, some ofwhich are documented below (O’Connor&Weatherall, 2018,
2019). But as a philosophical sub-discipline it also supplements work in philosophy of
mind, philosophy of language and philosophy of information with an emphasis on the
social dynamics of belief and action change. As an over-arching discipline, influence
theory includes aspects of decision theory and game theory as well as established
models of de facto segregation, cultural change, opinion polarization, and epistemic
networks (Schelling, 1969, 1971, 1978; Axelrod, 1997; Hegselmann & Krause, 2002,
2005, 2006; Zollman, 2007, forthcoming; Grim, 2009; Grim et al., 2013, 2015).

At the core of what we provide here is a systematic outline of results drawn from a
range of disciplines, togetherwith newmodels and extensions, in a structured overview
of influence theory as a cohesive area of investigation. Beyond intrinsic interest, a
systematic outline of this sort can be of value in at least three ways:

• It can emphasize the similarities and complementarities of results that are closely
related in formal structure, though they have been developed and applied in radically
different disciplinary contexts. This is an aspect we emphasize in Sect. 3 with regard
to influence interpretations of models from physics, biology, and computer science,
and in Sect. 4 with application of Markov and epidemiological models to opinion
dynamics.

• It can make obvious new or under-noticed applications of formal results across
fields, such as the implications of formal undecidability in cellular automata for
unpredictability of human patterns of communicative influence, a set of results
emphasized in Sects. 10 and 11.

• A systematic outline can also make it clear that there are parts of the over-all picture
that have not yet been explored or not yet filled in. We fill in some of those gaps
with simple models in Sects. 3 through 6, presented for the first time here, as well
as new extensions of population models, information cascades, and the Schelling
model in Sects. 5, 7, and 8.
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As a whole, influence theory constitutes an overarching discipline of models,
hypotheses, general results and limitative theorems. What our intial outline of that
discipline offers is not a full catalog but a philosophical framework in which various
results, both new and familiar, find their place. What such a framework can make clear
is the relation of different patterns of influence, the relation of different patterns to
one another, and promises and pitfalls of patterns of influence with regard to partic-
ular desiderata of communication, of social decision, of information and information
management.

2 Modelling the fundamentals of influence

In relating to our fellows in social context, we humans must in the interest of the
general welfare coordinate our own posture with theirs in every significant area of
endeavor: thought, action, and evaluation. A great deal of such coordination is overt,
explicit, and institutionalized. But much of it is also covert, below the radar screen
of instrumentalized explicitness. It is often here, below the level of overt control, that
influence comes into operation.

Influence can be exerted in all three of the main spheres of human endeavor: belief,
action, and valuation. Our informants and mentors exert influence over our beliefs,
our coaches and trainers over our actions, our world models over our values and goals.
While explicit control is typically exercised deliberately, influence can be implicit,
unintentional and even unwitting. Influence is quite generally a weaker course than
control. The controller gets to determine the outcomes at will: the light is on or off in
linewithwhat he does.Mere influence—ability to alter outcome probabilities—is gen-
erally as far as our efforts go. Parents may exert influence on the career choice of their
offspring, for example, but certainly do not control them. In chess one does not—or
only rarely—control the opponent’s response in forcing a particular move. But if my
moves do not influence those of my opponent—i.e. affect the responsive probabilities
of various counter-moves—then at least one of us is a very poor player indeed. Again,
only rarely do medications actually control our symptomatic responses. But if they do
not influence them in altering their likelihood then something is wrong. Ideally and at
the level of aspiration, science may aim at giving us control over phenomena. But in
general the world we live in is complex and uncooperative, forcing us to settle at best
for mere influence.

In the attempt even to boil things down to the simplest aspects of influence there
are a number of clear parameters:

• the agents involved
• the influential traits at issue
• the spatial and network patterns of influence contact
• the temporal patterns of influence

• Agents

We take people, or their formal stand-ins, as our basic agents. In the simplest case
we can deal with two. But how many agents are involved—and whether singly or in
groups or ‘schools’—can make a difference in how patterns of influence play out.
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• Traits

Is there a single trait at issue in the model—a ‘yes’ or ‘no’ regarding some propo-
sition on the ballot, for example—or a set of traits as with the different positions
constitutive of a political party platform? Do those traits take a binary value, or real
values?And are those traits linked, either in a deterministic pattern or probabilistically?

• Networks

Who are the actors who exert influence on an agent? With even two agents, we
can envisage either symmetrical or one-sided influence. With more, we can envisage
a line of agents influenced by those to their left or right, a two-dimensional lattice in
which agents are influenced by four neighbors (the von Neumann neighborhood) or
eight (the Moore neighborhood). Network patterns of any given dimension are open
possibilities, as are network patterns in which contact is dictated by similarity of traits
or proximity of opinion. Network patterns can change with individual opinion change.

• Timing

Temporal patterns of influence are as important as spatial patterns. Is the model one
in which all agents update opinions simultaneously, or in some pattern of sequence?
And is that temporal pattern deterministic, probabilistic, or random?

• Fundamental mechanisms

The character of the relevant dynamics can also vary. Even given a set of agents and
traits at issue, a network of contacts and timing of interaction, there are basic questions
that remain regarding the fundamental mechanisms of influence—the form that indi-
vidual instances of influence take. Is an agent changed by simple contact imitation, by
a majority of its network contacts at a time period, or a threshold proportion? Is that
influence deterministic or probabilistic? Does an agent replace a trait or traits, change
traits along a spectrum, ‘learn’ new traits in the manner of neural nets, or hybridize
traits in the manner of a genetic algorithm?1

Any specific formal model of influence will demand an intertwined specification of
all of these factors, and perhaps more. The ‘rules of the game’ will have to include who
is being influenced by whom, in terms of what traits, both spatially and temporally,
and in what way. The specific focus of influence theory is the dynamics of influence:
how spatial and temporal patterns of influence, of what kind, play out in the formal
models at issue. Questions of influence theory include those with a specific target: the
influence dynamics within a particular model, or even a particular model with a par-
ticular initial configuration. But influence theory also includes more general questions
regarding classes of models: similar dynamic patterns exhibited by all models with
certain characteristics, for example.

The character of dynamics that is of interest can also vary. Often it will be the
end-state of a process of influence that is of interest. Will one trait—an opinion,
for example—predominate or become a majority view, for example? Will opinions

1 Varieties of these different mechanisms within a model for which network, timing, agents and traits are
otherwise held constant are explored for example in Grim, Kokalis, Alai-Tafti, Kilb and St. Denis 2004.
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crystallize into unchanging polarization? But also of interest may be the path that leads
to that end-state.Will that end-state be asymptotically approachedor appear as a sudden
fixation?Wemay also be interested in the rates at which an end-state is reached, or the
comparative rates of dynamics given different fundamental mechanisms or different
networks of interaction. And of course there will be processes of influence that have
no tidy end-state: that show oscillation, chaotic behavior, or punctuated equilibrium,
for example.

The purposes to which influence theory can be put will include:

• A formal study of influence dynamics in the abstract
• Explanatory models of observed patterns of influence
• Predictive models of expected patterns of influence
• Normative models aimed at optimizing aspects of influence

• Formal theory

The formal development of influence theorywill emphasize the quasi-mathematical
study of pattern dynamics under iteration. As a formal study, an understanding of the
dynamics of influence in formal models is enough. But here as in decision and game
theory the possibility of applications can often be expected to be part of the focus.

Influence theory as we conceive it is a formal discipline, much as are decision
theory and game theory, aspects of which constitute sub-disciplines. But much of the
interest of that formal discipline, as much of the interest in decision and game theory,
will be in proposed applications. The formal discipline can tell us what to expect from
particular configurations of influence following particular formal rules. But whether
those configurations are in fact instantiated in a social reality, and whether those rules
are approximated in the interactions of real people, are empirical questions that must
be answered in order to apply the formal results, either predictively or normatively.
Such is the case with all formal disciplines. It is not the internal mathematics that
makes something applied mathematics.

• Explanatory models

In terms of application, the goal may be a descriptive understanding of an observed
social event or process, either specific or general—the conversion of a majority to a
belief in a specific conspiracy theory, for example, or a general increase in opinion
polarization with new individually chosen channels of communication.

• Predictive models

It is inevitable that attempts will be made to apply a formal study of influence
in the attempt to predict real patterns of influence: the effect of televised hearings
on opinion, for example, or a word-of-mouth campaign in advertising a particular
product. Predictions regarding the effect of various interventions will inevitably be
part of attempted applications as well. But it should be noted that such attempts are
fraught with difficulty (Rescher, 1998). An understanding of general dynamics of
influence, and even of basic mechanisms, is one thing. Point prediction amidst the
complexities of incomplete and inaccurate estimates of parameters in an actual case
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is another. We may fully understand the physics of balls rolling down frictionless
inclined planes, to use a common analogy, and yet be poor predictors of the course of
an elephant rolling down a hill—let alone, we might add, predicting the effects of the
intervention of putting a large boulder just here…

A particularly important focus for influence theory is the extent to which cer-
tain cases of influence are predictable within certain bounds, or predictable at all.
In a later section we will emphasize formal limitative results regarding the general
(un)decidability of influence systems.

• Normative models

Among the prospective targets of influence models are questions of optimization
with particular goals in mind. Given an influence desideratum—approximation to
a majority view or an independent truth—in what cases do particular networks of
agents using a particular set of updating rules achieve that desideratum? In what cases
is a pattern of influence optimal in those terms, and in what cases suboptimal? How
should we structure patterns of influence so as to increase effective communication
between levels of an organization, for example?What steps shouldwe take to block the
influence ofmisinformation across an existing network?What structure of influence in
representation makes a democracy most stable? What structure of influence between
theoreticians and experimentalists will give us the most accurate scientific results with
the most effective division of labor?

Given this range of parameters—model variations regarding agents, traits, net-
works, and timing incorporated in the rules of the game; focus on end states or path
dynamics; purely formal goals and applicational questions of explanation, prediction,
or optimization—it is clear that the overarching discipline of influence theory is an
enormous one.

3 Relevant models across disciplines

Influence as we understand it here can be seen as a concept that functions within the
broader realm of process theory. A process is a formula or transformation (φ) which
changes an initial state of something (I) into a resulting state (R), as per:
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I [φ] ⇒ R

A process thus has three components: an input, a mode of operation (modus operandi),
and a result.

The objects that will presently concern us as inputs in a process will be states of
information. The transformative processes will be modes of information processing,
and the result will be a duly determined state of information. The entire process can
thus be summarized as follows:

{Take a body of information} → {Perform a process of information manage-
ment} → {Inventory a manifold of results}

We have outlined influence theory with a primary eye to psychological, social psycho-
logical, and sociological influence in which are agents are taken as people. Influence
arises in an interaction between agents, whenwhat is done by the one evokes a reaction
in the other. It has two modes: the cognitive, which functions when what is done by X
affects what is believed by Y , and the practical which functions when what is done
by X affects the actions of Y . Our examples will focus on cognitive influence, though
many of our formal points apply to both forms.

The principal vehicle for exerting cognitive influence in this sense is communica-
tion,which is in operationwhenwhat someone says is understood by their interlocutors
and thereupon evokes a response in their beliefs. And here the result can be either pos-
itive (with the recipient’s inclination to what is declared being increased) or negative
(via a decrease.)WhenX exercises a positive influence on Y ’s belief we commonly call
this persuasion, which will of course be a matter of degree or extent—total or partial.
This is the most common and familiar mode of cognitive influence, and the mode on
which we will concentrate. But here again many of our formal points will apply to
influence that functions in terms of actions rather than beliefs as well as influence that
is not intentional.

Many of the formal points to be made concerning communicative influence among
people will also apply, and can profitably draw from, related studies regarding patterns
of change that are not cognitive and that need not involve people. There are two-
dimensional ‘voting models,’ interpretable as models of persuasion by neighbors, that
take precisely the form of Ising models of spin alignment and magnetism in physics
(Galam, Gefen & Shapir, 1982; Galam &Moscovici, 1991; Galam, 1997; Castellano,
Fortunato & Loreto, 2009). ‘Sociodynamics’ and ‘sociophysics’ represent classes of
explicitly physics-analogous models of social change along such lines (Helbing, 1991,
Wiedlich, 1971, 1991, 2002, Galam, 2012).

Influence theory can be seen as incorporating aspects of biology as well. Influence
can be seen as coordinating a manifold of traits with one’s own, realizing a partial
identity. The most radical form of influence would consist in total replication of one
individual’s descriptive content in another. This links the issue of influence with that of
self-replication—realizing the same overall descriptive constitution in the influenced
‘offspring’ that prevails in the influencing ‘parent.’ In itsmost formal instantiation, this
most radical form of influence is realized in the self-reproducing automata inaugurated
by John vonNeumann in the 1950s (Bhattacharya, 2021; Burks, 1966). Influencemore
generally can often be seen as a weakened self-replication, with total replication of
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descriptive traits as its most extreme form. Reciprocal ties to genetics and evolutionary
theory are clear.

The neural network models prominent in artificial intelligence, with both historical
inspiration from and application to neurophysiology, are models of influence in which
our agents are nodes envisaged as threshold neurons (Haykin, 1994). More generally,
causality can quite generally be read in terms of influence. InMill’s methods, causality
requires invariable coordination (Mill, 1843), but probabilistic networks can be seen
as models of causal influence as well (Glymour & Cooper, 1999; Pearl, 2000; Pearl
et al., 2016).

Our aim in what follows is to offer examples of influence modelling at various
levels, with an emphasis on the simplest patterns, some of the surprising results and
complexities even there, and on ties to established bodies of knowledge and results
that take an illustrative place within a broader consideration of influence in general.
Those examples are numbered in brackets (example: [4.1]) with a compendium of
examples in terms of the parameters above collected as an appendix.

4 Examples from the two-person case

In an attempt to distill things to the simplest case, we might simplify agents, traits, and
network parameters by building models with just two agents—A and B, envisaged on
the left and right—each with one of two ‘traits,’ here thought as opinions X and Y:

X Y

If the rules of the game regarding each exchange are that A influences B but not vice
versa, we instantly converge to unanimous agreement, which cannot change from that
point on. Our end state is simply

X X (3.1)

If the rules of the game are that each agent simultaneously influences the other, on
the other hand, we will have an oscillation of opinion at each iteration—a path that
clearly has no end state:

X Y

Y X

X Y

. . .

(3.2)

Here we have envisaged the timing of influence in our simplest case as simultaneous.
At a given interaction the agents have a simultaneous influence on the other. An
alternative is sequential timing, in which one agent first influences the other, the other
then influences the first, and so forth ([4.3]). With that change in timing the possibility
of oscillation in this simple model disappears. Whichever agent acted first would
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determine the opinion of both, just as the first play in tic tac toe can guarantee against
a loss. Both a fixed first moving agent and a random first-moving agent would leave
us with a unanimous opinion of either X or Y.

The ‘rules of the game’ need not dictate deterministic influence, however. A mere
probability of influence is a clear alternative as well. We might envisage our agents
A and B, again located left and right, as each having a probability of 0.5 of changing
the other agent’s mind ([4.4]). Here, if the influence exchange is simultaneous and
symmetric, we can expect the following outcomes with the following probabilities:

X X A exerts influence, B does not .25
Y Y B exerts influence, A does not .25
Y X Both exert influence, resulting in a switch .25
X Y neither exerts influence .25

In 50% of cases, in this example, we end up with a population of uniform opinion
after one exchange. But of particular interest may be iterated influence. What if we
have repeated rounds of influence exchange? In this example, after two rounds, we
will have as an outcome:

X X probability 0.375. This is 0.25 probability of an unchanging X X from
the first round, in which no further change influence is possible, plus
(0.25 *0.5), which is the probability of going to X X from the
proportion of cases that are still open to such a transition: X Y or Y X

Y Y probability 0.375 similarly
Y X probability 0.25 times 0.50 in the changeable cases = 0.125
X Y 0.125 similarly

On a third round, we would have.

X X 0.375 + (0.25 * 0.25) = 0.4375
Y Y 0.375 + (0.25 * 0.25) = 0.4375
Y X 0.25 * 0.25 = 0.0625
X Y 0.0625 similarly

With each round of influence, probabilities that one or the other opinion will dom-
inate increase.

This can of course be generalized to different influence probabilities. Suppose
agent A has an 80% probability of influencing agent B’s opinion, whereas agent B
has only a 20% probability of influencing A’s. In that case, starting with X Y and
with simultaneous influence on a single exchange. We can expect first step outcome
as follow:

X X probability 0.64 (0.8 probability that A exerts influence times 0.8
probability that B doesn’t exert influence)

123



211 Page 10 of 53 Synthese (2023) 201 :211

Y Y probability 0.04 (0.2 probability that B influences times 0.2 probability
that A doesn’t exert influence)

Y X probability 0.16 (0.8 probability that A influences B * 0.2 probability
that B influences A)

X Y probability 0.16 (0.2 probability that A doesn’t influence B * 0.8
probability that B doesn’t influence A)

After a first exchange we have a 0.68 probability that both share the same opinion. On
a second iteration this becomes.

X X 0.64 + (0.64 * 0.32) = 0.8448
Y Y 0.04 + (0.04 * 0.32) = 0.0528
Y X 0.16 * 0.32 = 0.0512
X Y 0.16 * 0.32 = 0.0512

and so forth.
All calculations of this form, as long as probabilities of influence are fixed, will

asymptotically approach an equilibrium. Here that equilibrium is simple and obvious:
the opinion of the agent with the higher probability of influence will dominate in the
long run, though the exact pattern of that ‘long run’ will depend on the rolls of the
dice.

Here as above we may also consider a variation in timing from simultaneous pos-
sibilities of influence to sequential, which give us importantly different results ([4.5]).
Let us return to our two agents A and B, on the left and right, each with a 50%
probability of converting the other:

X X

We envisage A going first, followed by B if both don’t yet agree, followed by X,
and so forth.

With A going first from X Y, the probability of an X X arrangement after the first
round is 50%.

WithAgoing first andBgoing second (in cases that haven’t already been ‘decided’),
the probabilities after the second set of exchanges are:

X X 0.5
Y Y 0.5 * 0.5 = 0.25
X Y 0.5 * 0.5 = 0.25

Note that a final configuration of Y X is not possible if A playing X takes the first
move.

The probabilities with a further play by A are.

X X 0.5 + (0.5 * 0.25) = 0.625
Y Y 0.25
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X Y 0.5 *. 25 = 0.125

and so forth.
One point of interest is that convergence to a single opinion is ‘faster’ in the case of

sequential influence, if we count by number of plays by A+ plays by B. After a single
round, the probability of opinion agreement in the case of simultaneous exchange is
0.5; in the case of sequential exchange the probability of agreement is 0.75.

As in the simultaneous case we can also calculate results of sequential exchange
for different influence probabilities. If A’s influence is 0.8 compared to B’s influence
of 0.2, probabilities in which A takes the first move will be:

X X 0.8
X Y 0.2

With a second influence from B these become:

X X 0.8
Y Y 0.2 * 0.2 = 0.04
X Y 0.8 * 0.2 = 0.16

And so forth. Here too sequential updating gives us a faster convergence toward
uniform opinion. After a single play by each of A and B the probability of the same
opinion is 0.68 in the case of simultaneous influence, but 0.8 in the case of sequential.

A very general measure of relative influence between agents suggests itself. Let
it be that over a succession of time periods (say days) results for A and B show the
following pattern, where + or – indicate the presence or absence of a trait at the end
of that period and ( +) and (-) indicate whether that trait has changed in a way that
reflects that of the other agent on the previous period ([3.6]):

period 1 period 2 period 3 period 4 period 5 period 6 period 7 period 8
Agent A + + (-) - + + (-) -
Agent B - - ( +) (-) - - ( +) (-)

In exploring the prospect of influence we can ask:

For how many periods—i,e., how many times—does A’s condition in point of
+ or - exhibit a change that reflects B’s condition on the previous day?

For the two agents the days on which such change in conformity occurs have been
parenthesized. For A there are two such other-conforming days; for B there are four.
With influence interpreted along these lines, it becomes a statistically straightforward
process to determine its direction and its extent. In this example there are 7 oppor-
tunities of influence of which A seized four and B two. By comparative standards A
exerted influence to the extent 4/7 and B to the extent 2/7/ by relative standards A was
twice as influential as B.

One obvious aspect of simplification in our presentation of these simple models is
that we have focused on a single binary trait. A larger area of investigation opens with
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the consideration of influence across multiple traits, rather than just one. It’s clear that
similar calculations and a similar measure could be expanded to the case of multiple
traits as well.

In the examples above we have treated traits as binary options. But many opinions
are best envisaged as on a scale: one’s response to questionnaire questions using a
Likert scale, for example, the percentage of tax revenues one thinks should be spent
on public education, or one’s degree of confidence in an improving economy. Here
different rules of the game will be appropriate, with their own characteristic dynamics.
As a simple example, consider agents A and B with opinions 0.1 and 0.9 respectively
and a pattern in which each agent simultaneously influences the other to move halfway
toward its opinion ([4.7]). Agent 1 will move to 0.5, as will agent 2, with a clear
convergence. If the dynamic is that of the sequential pattern above, however, agent 2
will firstmove to 0.5 but agent 1will thenmove to 0.7, agent 2will thenmove to 0.6 and
agent 1 to 0.55, resulting in an importantly different outcome. Even in simultaneous
updating, our two agents need not follow the same updating rule. If agent 2 stubbornly
refuses to budge, but agent 1 follows the ‘half-way’ pattern of influence, agent 1 will
slowly move to meet an opinion of 0.9.

One further note of interest is that our ‘rules of the game’ in these initial models
have here been equally balanced in terms of the number of influence events allotted
each agent. In sequential influence it certainly does matter who goes first, but even
there we have envisaged alternating influence events. All probabilities will change if
agent B somehowmanages to take two turns for one ofA, for example ([4.8]). Decision
theory and especially game theory are known for calculation of optimal strategies. In
influence theory one aspect of strategy will be a calculation of how many instances
of influence are required in order to compensate for lower probabilities of effective
influence on each interaction.

Standard game theory, though it maps gains from interactions, does not standardly
include influence. But a simple variation—imitative game theory—clearly would. In
such a variant, agents gain or lose points from an interaction (or series of interactions),
but then adopt the strategy of a neighbor if that neighbor is doing better. One might
envisage this as a version of game-theoretic gains in which an aspect of influence
theory is added. But one might also envisage it as a form of influence theory in which
motivations for change aremore complex and are tied to payoffmatrices from previous
interactions. Imitative game theory of this sort is played out on a two-dimensional
lattice inNowak&May, 1992 and 1993 and a string of later relatedwork (Grim, 1995).
Differences between simultaneous andnon-simultaneous influence in that instantiation
are noted inHuberman&Glance, 1993. Results in this tradition for stochastic imitative
game theory appear in Nowak & Sigmund, 1992 and Grim 1996.

5 The interaction of multiple agents

In the two-agent case, both the rules of the game and the temporal element of, for
example, simultaneous versus sequential play make important differences in both
outcome and path dynamics of influence. Extension to consideration ofmultiple agents
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adds many more complexities, starting with how agent interaction if envisaged: at
random across a population, for example, or within a structured network.

Here we might also entertain the possibility that those holding view Y as more
persuadable than those holding X: on an occasion of interaction, those holding Y may
have a 30% probability of converting to X, while those holding X may have merely
a 10% probability of converting to view Y. We can suppose each sub-population to
occupy 50% of the whole ([5.1]).

At a first glance, one might think that such a population would quickly become one
in which all agents hold opinion X. But here the case differs significantly from that
of just two agents. With an exchange in which all agents interact with all others, the
expectation is that 10%ofX’swill becomeY’s and 30%ofY’swill becomeX’s, giving
us 60% X’s and 40% Y’s. But at that point the disparity in the populations becomes
crucial. Since the population is 60% X, Y’s will interact with a larger population
of ‘others’ than X’s will, giving their X-to-Y conversion probabilities a wider field.
That pattern continues. On successive interaction instances of all agents with all, the
expected proportions of X and Y in the population exhibit the following pattern:

X Y
50% 50%
60% 40%
66% 34%
69.6% 30.4%
72.03% 27.97%
…

AlthoughX’s proportion slowly increases andY’s slowlydecreases, eachprogresses
Zeno-style not toward a population entirely of X’s but toward a fixed point equilibrium
of 75% X and 25% Y. At those proportions, our probabilities balance out. At 75%,
The percentage of X’s on the next generation will be (0.75 * 0.9) + (0.3 * 0.25) =
75% again.

Somewhat more surprising is the fact that it doesn’t matter what proportion of X’s
and Y’s we start with, as long as our conversion probabilities remain the same. If we
begin with 10% X’s and 90% Y’s, or 1% X’s and 99% Y’s, progression is to the same
equilibrium of 75% X’s and 25% Y’s. The role of initial proportions is swamped by
the iterated application of fixed transition probabilities.

This simple two-party case is a Markov process, for which the Perron-Frobenius
theorem applies (Page, 2018). Given a finite set of states (our X and Y), the possibility
however unlikely of eventuallymoving fromone state to any other, and the absence of a
deterministic cycle through a sequence of states, any such system will asymptotically
approach a fixed equilibrium of proportions. The same will hold for any number
of states. Were 4 exclusive opinion possibilities at issue, with fixed probabilities of
transition between them—20% probability that an X will become a W, 10% that it
will become a Y, 0% that it will become a Z (but 1% probability that a Y will become
a Z), for example—our system would again approach a fixed probability.
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Fig. 1 Standard course of an epidemic in a SIR model

Classical forms of epidemiological calculation follow precisely this pattern (Ker-
mack and McKendrick 1927, 1932) ([5.2]). In a SIR model we have proportions of a
population which are uninfected but susceptible (S), currently infected (I), and recov-
ered and permanently immune (R). Given the assumption of random mixing in a
population and a specific probability R0 > 1 of a susceptible becoming infected on
exposure, the course of a disease standardly follows the type of S-curve also evident
in the case of X and Y above (Fig. 1).

A variation is the SIRS model (susceptible-infected-recovered-susceptible) in
which recovery is not assumed to guarantee immunity. The recovered thus have some
probability of re-entering the susceptible population. Unlike the pattern shown in
Fig. 1, inwhich the susceptible proportion of a population declines to 0 as the recovered
proportion climbs to 1, an SIRS model offers the prospect of a continuing equilibrium
of endemic disease, such as that expected for Covid and its variants.

The assumptions of the Perron-Frobenius theorem include the lack of a deter-
ministic cycle through states. If X’s had a 100% probability of converting to Y’s on
exposure, and Y’s had a 100% probability of converting to X’s, our dynamics would be
oscillatory, without a fixed point equilibrium ([5.3]). Starting with 25% X’s and 75%
Y’s, expectations would return to that proportion every other iteration, with its mir-
ror image—75% X’s and 25% Y’s—in between. The Perron-Frobenius theorem also
demands fixed probabilities of transition between states. Changing these can easily
change the equilibrium, and irregular or chaotic enough change can defeat the possibil-
ity of equilibrium entirely. A study of patterns of epistemic chaos when self-reference
is at issue appears in Grim, Mar & St. Denis (1998) ([5.4]).

The Granovetter model of propensity to riot is a population model in the same
sense as these, in that only percentages of the population are at issue (Granovetter,
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1978) ([5.5]). But it differs from the examples above in that different agents have a
propensity to convert froman ‘unwilling to riot’ to a ‘willing to riot’ position depending
on the number of others in the population who are already rioting. Precisely the same
dynamics are at issue if we simply consider agents willing to convert from position
X to position Y given heterogeneous percentages of the population that already hold
position Y.

The point of the Granovetter model is a simple one: that the distribution of ‘trigger
percentages’ is crucial to the outcome of the whole in ways in which a mere average of
‘trigger percentages’ is not. Consider a population in which 1% already holds view Y,
with the rest holding view X. But suppose also that a second 1% is willing to convert
to Y if 1% of the population holds Y, a further 1% is willing to convert if 2% of the
population holds Y, a third 1% if 3% of the population holds Y, and so forth. The
result, trickling over time, will be a population of agents all of whom hold position
Y. But a population that starts with 1% Xs but in which the next 2% with the lowest
threshold will convert only if 2% of the population holds Y will forever remain with
99% of the population holding view X.

An epistemic model that relies on theMarkov process noted above but goes beyond
mere population percentages is Lehrer & Wagner’s, 1981 model of the formation of
rational consensus ([5.6]). Each agent begins with their own probability assignments
regarding alternative hypotheses (that the sun is spherical, oblate, or neither, for exam-
ple) as well as weights representing the credibility or reliability that agent assigns to
his own views and those of each of the other members of the group. Using initial
probabilities and (positive) other member weights as a representation of background
knowledge, each agent revises his or her hypothesis probabilities as the weighted aver-
age of the probability assignments of all members of the group. If each agent assigns
positive reliability weights to all other members and keeps those weights constant,
it can be shown that under iteration such a process converges in the limit toward a
consensus in which all agents have the same probability estimates for the hypotheses
at issue. As Lehrer and Wagner note, the consensus results of such a model are again
those of a Markov process. Earlier consensus models in this tradition include French,
1956, Hararay, 1959, and DeGroot, 1974. Later models that show lack of consen-
sus and polarization when basic trust assumptions are weakened are outlined below
(Deffuant et al., 2002; Hegselmann & Krause, 2002, 2005, 2006).

6 Linear influence

Although the models considered in the previous section involve multiple agents, they
are largely populationmodels. Like the SIRmodel, they carry an assumption of random
or complete mixing or contact. But with multiple agents also comes the structure of
specific networks of interaction, in which it’s not true that every agent is in contact
with every other.

A simple first case is a one-dimensional model in which our agents form a line.

· · · X Y Y X Y X X Y Y Y X Y · · ·
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Any of various rules may be in play. For example, let it be that an agent holding
position X changes to position Y whenever one of its neighbors is a Y ([6.1)]. If there
are any Ys at all, all agents in such an arrangement will eventually hold position Y.
We can also consider the case in which a similar rule holds but with a mere p-percent
probability: there is a positive p-percent chance than an X will turn an adjacent Y into
an X within the next interval of time. If there are any Xs at all, then the entire array
will become homogeneously X subject to this mode of linear diffusion, but at a rate
of speed contingent on probability p.

Or suppose that for a Y to be turned (for sure) into an X it needs to be surrounded
by X on both sides, so that X Y X – > X X X ([6.2]). Then some Ys in a random
series will predictably be changed, but some may never be, for example the Y’s in a
formation X X Y Y X.

Given a network spatialization, moreover, rules need not be symmetrical. Consider
the alternating sequence.

X Y X Y X Y X Y

subject to the rule that every Y preceded by two Xs will be changed to an X ([6.3]).
Given this initial arrangement, nothing will change.

But consider the same change-rule with a random sequence.

X Y X Y Y Y X X Y X Y Y Y · · ·

Here, once the rule begins to take effect, everything further to the right will uni-
formly become X. So here the diffusion issue depends not (just) on the ‘infection’
change rule but one the nature of the initial distribution.

We start with a simple line of agents with alternating opinions X and Y:

X Y X Y X Y X Y X Y

If agents convert to an alternative opinion when surrounded by neighbors with that
opinion, and if all agents update simultaneously, our array will evolve as follows,
‘rearranging’ all X’s to the left and all Y’s to the right, as it were ([6.4]):

X X Y X Y X Y X Y Y
X X X Y X Y X Y Y Y
X X X X Y X Y Y Y Y
X X X X X Y Y Y Y Y

Alternative initial patterns will give us alternative final patterns. The following, for
example, will leave us with an island of Y’s in the center of X’s:

X Y X X Y Y X X Y X
X X X X Y Y X X X X
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Of particular interest is a loop in which opinions circle at the point marked z ([6.5]):

z X Y X Y X Y X Y X Y X Y X Y X Y z

Each X here is surrounded by two Y’s, each Y by two X’s. Thus on each exchange
each X will convert to a Y and each Y will convert to an X, resulting in an infinite
oscillation across the entire array.

But consider a simple alteration in which we have two X’s in a row:

z X X Y X Y X Y X Y X Y X Y X Y X Y z

Those ‘leftmost’ X’s will not convert, though Y’s on each side will, and will not revert
to Y’s on the next iteration. In the end the entire array will become occupied by X’s;
oscillation in that case will give way to spreading unanimity.

Given simple rules, then, a change in initial configurations can produce radical
changes in the evolution and ultimate configuration of an array. It’s also obvious that
different rules will give us a different influence dynamics. One body of work that
fits into linear influence theory is the study of information cascades, perhaps better
thought of more generally as influence cascades.

7 Influence cascades

In the simplest case, a linear influence cascade can be modelled in terms of a line
of individuals who make decisions not simultaneously, as in the examples above,
but sequentially. A first agent considers personally available evidence and makes a
decision. A second agent considers his or her personally available evidence, but also
the decision of the first agent. A third agent considers personally available evidence
together with the information afforded by decisions made by previous agents in the
line.

In one ideal case, each agent may share both his or her decision and the evidence
on which it is made. In such a case individuals further down the line would have an
increasing body of evidence on which to act. If the evidence that each individual per-
sonally receives has even a small probability of being correct—51%, say—individuals
far enough down the line will have accumulated evidence sufficient to establish the
correct decision with a probability approaching 1 ([7.1]).

But inmany cases personal information or evidence is not shared,with only the deci-
sion or corresponding action of previous agents being observable. Here the observed
performative becomes a crucial element in the calculated cognitive response. In a
variety of financial transactions, for example, it may be to agents’ interests not to
reveal their basis of decision, although that decision itself may be publicly observ-
able. Even in communication, social or media-mediated, we may take shortcuts by
following actions of other agents rather than ferreting out full evidence and argument
for ourselves. In the extreme case, it is only other agents’ ultimate decisions that are
observable. In such a case, rational observers could infer the evidence received on the
basis of that decision or corresponding action, but only on that basis ([7.2]).
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It is in this latter case—and the extent towhich real cases approach it—that informa-
tion cascades can be expected to occur. To the extent that we are influenced by others’
actions alone as a guide to their individual information, we are open to cascades of both
information and misinformation. Here we will also emphasize that sub-groups within
a population will increase the probability of a misinformed subgroup and opinion
polarization between groups.

We start with a line of agents each making a decision sequentially on the basis of
available information. We suppose each agent has private information as to p or ~ p,
for simplicity with a set probability of being correct that is the same for all agents.
Our first agent samples the available evidence and, let us say, decides on that ground
that p. Our second agent samples his private information, which indicates either p or
~ p.

Suppose that the second agent’s evidence indicates that p. In that case his decision
is clear: he knows that both his own evidence indicates that p and that the evidence of
the first agent does as well. But now note what happens with the third agent. Even if
his private evidence indicates that ~ p, the decisions of both predecessors indicates that
two other agents, presumed to be peers, have evidence that p. On rational grounds, he
will take his personal evidence to be an outlier, andwill decide that p despite his private
evidence to the contrary. What holds for our third agent holds even more strongly for
all the rest down the line: All subsequent agents will override individual evidence in
favor of a decision that p—an information cascade in which everyone decides that p
simply because of the evidence of two agents at the front of the queue. Had those two
agents both decided that ~ p, we would have a symmetrical information cascade of
uniform decision for ~ p.

What if our first agent had decided that p, but our second agent’s personal infor-
mation indicated ~ p? In that case, if our second agent treats his predecessor as a full
peer, available information is simply split. The second agent might then flip a coin, in
50% of cases resulting in precisely the cascade we’ve tracked.

Should the first agent choose p and the second agent choose ~ p, their individual
influence effectively cancels out and we start the line again with the third player. That
third player can be presumed to go with their private information, just as we assumed
for the first agent before. The fourth agent will either have information on the same
side as the third—starting a cascade as before—or will have contrary information,
calling for a flip of a coin with a 50% probability of a cascade or a procedure that
effectively ‘starts again’ with the fifth player.

One thing to note is that it is not merely the balance of evidence between p and ~
p that is at issue, but the path-dependent order in which that evidence appears. If we
suppose that agents’ evidence arrives as p for agent 1 and p for agent 2, followed by ~
p for agent 3 and ~ p for agent 4, an information cascade for p will already have been
established after the first two agents, swamping the individual evidence of subsequent
agents. But if we suppose a pattern of evidence ~ p, ~ p, p, p for agents 1 through 4,
the cascading information through the population as a whole will be a cascade of ~ p
instead.

To this point we have tracked the formation of cascades, but have not tracked their
accuracy. Let us suppose that the truth is in fact p, but that evidence available is
ambiguous or noisy, giving agents only a 51% probability of accurate information.
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Private information in that case will have a probability of 51% of giving the correct
answer p, a probability of 49% of giving the incorrect answer ~ p.

In such a case, after just the first two agents’ decisions, there is an approximately
75% probability of getting a cascade one way or the other. The probability of a p
cascade on the basis of identical information between the first two agents that p is
0.51 * 0.51 = 0.2601. The probability of a p cascade on the basis of a coin flip given
divergent information between the first two agents is 0.51 * 0.49 * 0.5 = 0.12495.
Taken together, the probability of a p cascade on the basis of p information to each
of the first two agents is 0.38505. The probability of a ~ p cascade is 0.49 * 0.49 =
0.2401, + 0.12495 = 0.36505. Summing all of these, the probability of one form of
cascade or another in which everyone goes for p or ~ p after just the first two agents’
decisions is 75.01%.

A cascade can be avoided, we’ve noted, only if the first two agents differ in decision,
followed by the next two agents differing in decision, followed by the third two again
differing…With an evidence probability of 0.51, the chance of such a pattern occurring
four times in a row is only 0.004, meaning that after 8 agents in line the probability of
a cascade one way or the other is greater than 99% – despite the fact that individual
evidence leans only 51% on one side (Bikhchandani, Hirshleifer & Welch, 1998).

Of course the information that cascades through such a pattern may in fact be
correct information. If information has a 51%probability of being correct, very slightly
more of the cascades will be cascades of correct information p rather than incorrect
information that ~ p. In the case at issue, the probability that a cascade is a correct
p cascade rather than an incorrect ~ p cascade can be abstracted from the first-two-
agent case above: 0.38505 / (0.38505 + 0.36505), or approximately 51.334%. This is
slightly better than the 51% probability of agents acting on their private information
alone, but of course far less than the probability approaching 1 of a correct decision
were the evidence seen by each agent available to all.

The higher the probability that evidence is correct, the higher the probability that a
cascade will be a cascade of correct information. Bikhchandani, Hirshleifer & Welch
(1998) graph the proportions of correct and incorrect cascades given information
probabilities as in Fig. 2. At even a probability of correct information of 0.7, the
probability that an essentially inevitable cascade is a cascade of correct information is
0.753. The probability of a cascade of incorrect information infecting the population
as a whole is still 0.247.

Although we have envisaged influence theory as a formal discipline, we have also
noted that will inevitably be mined in the attempt to understand social and other
phenomena at every side. Here it is thus perhaps not out of hand to note that the
phenomenon of informational cascades has implications for contemporary concerns
with echo chambers and opinion polarization.

Themodel and calculations above are basedon the assumptionof a single population
of sequentially ordered agents. The same basic pattern will hold, however, if we have
a branching tree of sequentially deciding agents. One need only think of the first two
agents as the trunk, with lower agents acting on what they observe of agents on a direct
line above them.

Consider now the possibility of a population divided into two enclaves ([7.3]). Even
if the information received by all agents is the same, we can calculate the probability
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Fig. 2 The probability that a cascade is of correct vs. incorrect information (y axis) given a probability that
private agent information has a given probability of correctness (x axis). From Bikhchandani, Hirshleifer
and Welch, (1998)

that the populationwill be polarized in terms of opinion.At information of a probability
of 0.7, we’ve noted, the probability of an essentially inevitable cascade being a correct
one is 0.753. The probability of two independent cascades in two independent enclaves
both being correct is thus a mere 0.567. If the evidence is noisy or ambiguous the
situation is far worse. Given an evidential probability of 51, the probability of an
essentially inevitable cascade being correct is a mere 51.334 * 51.334 = 0.2635. The
probability of an opinion-polarized population when evidence is that ambiguous or
noisy, in other words, is close to 75%.

The more independent enclaves there are in a population, the higher the proba-
bility of polarization. With four informationally isolated enclaves, the probability of
full unanimity on the correct answer given an evidence probability of 0.7 is merely
0.753 * 0.753 * 0.753 * 0.753 = 0.3215, meaning that the probability of cascade of
misinformation in at least one portion of the population is greater than 2/3.

Cas Sunstein and others warn us against the dangers of epistemically isolated
sub-groups (Sunstein, 2001, 2007). C. Thi Nguyen distinguishes between ‘epistemic
bubbles,’ which are defined merely in terms of epistemic isolation, from ‘echo cham-
bers’ defined as discounting information from other areas (Nguyen, 2020). To the
extent that the epistemic dynamic of subgroups can be captured in terms of the con-
ditions of epistemic cascades, and given any noise or ambiguity in information or its
processing, epistemic isolation of sub-groups would be enough to predict and explain
unanimity within ‘echo chambers’ and radical polarization of sub-groups across a
population.
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With an eye to applications it is certainly appropriate to ask towhat extent themodel
assumptions of information cascades hold, and to what extent the modelled behavior
can be seen in real cases of human influence. It has been proposed that real situations
from fads and fashions to the spread of rumors, adoption of new technologies, and
even involvement in crime can have at least some of the marks of information cascades
(Bikhchandani, Hirshleifer &Welch 1998, Walden & Browne, 2002, Kahan 1997). In
the general phenomenon of ‘social proof,’ well established as a phenomenon in social
psychology, the action of others is taken as grounds for imitation, though the strict
sequence of the cascade model is not generally in play (Cialdini, 2009). It is a standard
advertising and marketing strategy to stimulate and publicize ‘early adopters,’ and it
has been claimed that Donald Trump’s political campaign was kicked off using a
cheering group of paid actors playing such a role. In a laboratory experiment designed
to closely match the assumptions of themodel, Anderson andHolt (1997) demonstrate
an epistemic cascade. In a line of 94 agents guessing whether an urn contained 2/3
black or 2/3 white balls and privately given one drawn ball, 79 agents acted against
their own private evidence and followed a cascade.

But the model assumptions for influence cascades are strong ones. As presented,
these include lines of agents making their decisions sequentially and agents that treat
others as epistemic peers, such that a decision that p by a preceding agent is taken as
evidence for p as strong as an individual’s own private information.

Both conditions can be weakened. As noted, decision structures can be tree-like
rather than linear. All that is really required is that an agent take earlier decisions
of other agents as evidence on a par with his or her own. It need not even be that
an agent treat others on a paras epistemic peers. If an agent discounts the evidence
drawn from others’ actions—at only 80% the comparative value of his own evidence,
for example—it is still the case that a pattern of previous choices will overwhelm
individual evidence, leading to a cascade ([7.4]). In the long run that pattern too
will be inevitable, with virtually the same conclusions holding with regard to the
inevitability of cascades and the percentages of correctness. Although we do need to
guard ourselves with the proviso ‘to the extent that real situations model the conditions
of the model,’ therefore, the model is not limited to either strictly linear patterns of
decision or full deference to previous agents as epistemic peers, nor does it demand a
homogeneous probability of correctness for agents’ evidence.Whereverwe see actions
of earlier actors taken as evidence, rather than their evidence itself, we should expect
the possibility of something like an epistemic cascade.

There are a family of influence models from political science which further enrich
considerations of multiple agent influence under different decision rules, specifically
with implications for the impact of decision rules on the selective sharing of informa-
tion (Fedderson & Pesendorfer, 1998; Coughlan 2001; Austin-Smith and Feddersen
2005, 2006). Consider for example a jury voting to acquit or convict a defendant, and in
which each juror has a single piece of information i or g (a ‘private signal’) indicating
guilt or innocence, with a given probability of being correct. Jurors are also assumed to
each have a ‘bias’ or standard of reasonable doubt with regard to how much evidence
should be required for conviction. Some jurors may require all evidence to be g in
order to convict, whereas others are willing to convict given a smaller percentage of g
evidence ([7.5]).
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What this family of models emphasizes is the impact of a unanimous decision rule,
requiring for conviction or acquittal that all jurors vote the same way, as opposed to
mere majority rules. The simplest and perhaps most optimistic case is that in which
jurors vote ‘informatively,’ accurately representing their private signals. In that case
the unanimity rule leads to a lower probability of convicting the innocent than does any
meremajority rule (Fedderson& Pesendorfer, 1998, p. 24). The possibility of strategic
voting and strategic representation of private information changes that result dramati-
cally, however. Under different decision rules and given different juror ‘biases,’ there
can be an incentive for jurors who see themselves as pivotal not to vote in accord with
their private information or not to reveal that private information in discussion, delib-
eration, or preliminary straw polls. Where verdict error is taken as variance from what
the full set of information would indicate, the result is that the use of a unanimity rule
can be expected to lead to a higher probability of error than a range of majority rules.
Given uncertainty regarding other jurors’ biases, Austin-Smith & Feddersen (2006)
argue that “the unanimity rule is uniquely bad with respect to providing committee
members with incentives to share relevant information prior to voting (p. 211).”

Application of influence cascade models to opinion polarization has already been
mentioned. Polarization is also the target of a related model in which enclaves or
networks of influence are formed on the basis of proximity of real-valued rather than
binary opinion, but in which something like an influence cascade can also occur.
Hegselmann and Krause offer a ‘bounded confidence’ model in which mutual influ-
ence is modeled between those within only a specific threshold ε of opinion similarity
(Hegselmann & Krause, 2002, 2005, 2006) ([7.6]).. Opinions in the Hegselmann-
Krause model are mapped onto the [0, 1] interval, with initial opinions spread
uniformly at random. Belief updating is done by taking a weighted average of the
opinions that are ‘close enough’ to an agent’s own. As agents’ beliefs change, a dif-
ferent set of agents or a different set of values can be expected to influence further
updating.

The primary results of the model are the formation of consensus given certain
thresholds for who counts as ‘close enough’ and the formation of polarized groups
with narrower thresholds. Figure 3 shows the changes in agent opinions over time in
single runs with thresholds ε set at 0.01, 0.15, and 0.25 respectively. With a threshold
of 0.01, individuals remain isolated in a large number of small local groups. With a
threshold of 0.15, the agents form two permanent groups. With a threshold of 0.25, the
groups fuse into a single consensus opinion. Very similar results appear in a model by
Deffuant et al (2002) in which the sharp cutoff thresholds of the Hegselmann-Krause
model are replaced with continuous influence values.

An illustration of average outcomes for different threshold values in the
Hegselmann-Krause model appears as Fig. 4. What is represented here is not change
over time but rather the final opinion positions given different threshold values. As the
threshold value climbs from 0 to roughly 0.20, there is an increasing number of results
with concentrations of agents at the outer edges of the distribution, which themselves
are moving inward. Between 0.22 and 0.26 there is a quick transition from results with
two final groups to results with a single final group. For values still higher, the two
sides are sufficiently within reach that they coalesce on a central consensus.
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Fig. 3 Example changes in opinion across time from single runs with different threshold values ε ∈ {0.01,
0.15, 0.25} in the Hegselmann and Krause (2002) model

Fig. 4 Frequency of equilibrium opinion positions for different threshold values in the Hegselmann and
Krause (2002 )model scaled to [0, 100]
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8 Influence across two dimensions

Spatial patterns of influence can of course instantiate higher dimensions than the linear.
One well-known study represents both (1) the effect of patterns of differential contact
and (2) the formation of patterns of contact.

In the standard presentation of the Schelling model (Schelling, 1969, 1971, 1978),
one envisages two types of agents (plus spaces) in a two-dimensional checkerboard.
Agents have specific thresholds of ‘tolerance’ for other agents in their immediate
neighborhood: the Moore neighborhood of the 8 cells immediately adjacent to them
([8.1]). If the agents surrounding a red agent meet a certain percentage of similar
red agents (30% of ‘its kind’, perhaps), that agent stays put. If it is surrounded by a
percentage below its threshold, it moves to another spot until it finds one that meets
that threshold.

Schelling’s was intended as a model of de facto segregation, demonstrating that
recognizable patterns of racial segregation need not require high levels of individual
racism: that desire for merely 30% of ‘one’s kind’ in one’s immediate neighborhood
could nonetheless result in qualitatively distinct segregated enclaves (Fig. 5).

But Schelling’s model represents an abstract dynamics. Its space need not be inter-
preted as geographical residence, and its types need not be interpreted in terms of race.
An alternative interpretation is one in which colors represent pro- and anti- attitudes
toward a principle or proposition, or conflicting political views. Position on the grid
can be read as communication or association with others, and the threshold read as
that percentage of associates an agent wishes to be ‘like-minded.’

On that alternative interpretation, what Schelling’s model shows quite vividly is
the formation of patterns of influence and their reinforcement. What one sees in the
evolution of an array such as that in Fig. 5 is the formation of ‘epistemic enclaves’ or
‘echo chambers’ in which a large percentage of associations are like-minded (74%, in

Fig. 5 Typical evolution in the Schelling model with a 97% density and desired neighbor percentage ratio
of 30%, resulting in neighbor similarity of 74%
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the example of Fig. 5), even when the desire for like-minded association is relatively
low (30%, say). There is also a mixed interpretation, in which space remains resi-
dential but in which agent colors are taken to indicate ‘like-mindedness’ or political
persuasion. On such a reading, the model would predict residential segregation along
political or opinion-based lines, a trend that forms the core of work by Sunstein (2001,
2007).

Two aspects of Schelling dynamics are of particular note with regard to this inter-
pretation. The first is that the configuration of opinion areas clearly depends on the
(symmetrical) levels of like-mindedness demanded by the two types of agents. Where
the percentage of like-minded neighbors demanded is 50% rather than 30%, the areas
occupied by each type are larger and far more contiguous, with a neighbor-similarity
of 97% rather than 74% (Fig. 6; note that this is a wrap-around or toroidal display). On
an interpretation in terms of patterns of influence, the result of higher ‘like-minded’
demands is a tendency toward twomonolithic areas rather than a scattering of separated
‘like-minded’ islands.

The second aspectworthy of note is the potential role of different thresholds of ‘like-
mindedness’ between the two agent types. With a fairly low density, allowing many
unoccupied spots in the array, a low ‘don’t care’ threshold on the part of the greens
together with a high ‘like-minded’ demand on the part of the reds results predictably
in enclaves of reds in a field of scattered greens (Fig. 7a) ([8.2]). But with a fairly
high density, allowing few unoccupied spots, and despite a ‘don’t care’ attitude on the
part of greens, it proves much more difficult for enclaves of reds to form, however
high their ‘like-mindedness’ demands. This is simply because the greens will have no
desire to move, and thus will not open up desired spatial options for the reds (Fig. 7b).

In a two-dimensionalmodel of influencewhich incorporatesmultiple traits,Axelrod
(1997) proposes that a form of polarization can arise from an intuitive mechanism
that would at first sight seem only to promote conformity and cultural convergence

Fig. 6 Typical evolution in the Schelling model with a 97% density and desired neighbor percentage ratio
of 50%, resulting in neighbor similarity of 97%. Note that this is a ‘wrap-around’ or toroidal array.
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Fig. 7 Contrasting ability of red enclaves to form with low density (left) as opposed to high density (right),
despite a 50% like-mindedness demand on the part of reds and a mere 5% like-mindedness demand on the
part of greens in both vases

([8.3]). The basic premise is this: that people tend to interact more with those like
themselves and tend to become more like those with whom they interact. But if people
come to share one another’s beliefs (or other cultural features) why do we not observe
complete cultural convergence? At themodel’s core is a spatially instantiated imitative
mechanism that produces cultural convergence within local groups but also produces
progressive differentiation and cultural isolation from other groups. He refers to that
differentiation as ‘polarization’.

Axelrod’s base model consists of 100 agents arranged on a 10 × 10 lattice such
as that illustrated in Fig. 8. Each agent is connected to four others: top, bottom, left,
and right. Agents in the model have multiple cultural ‘features’, each of which carries
one of multiple possible ‘traits’. One can think of the features as categorical variables
and the traits as options or values within each category. For example, the first feature
might represent culinary tradition, the second one the style of dress, the third music,

Fig. 8 Typical initial set of ‘cultures’ for a basic Axelrod-style model consisting of 100 agents on a 10 × 10
lattice with five features and 10 possible traits per agent. The marked site shares two of five traits with the
site above it, giving it a cultural similarity score of 40% (Axelrod, 1997)
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and so on. In the base configuration an agent’s ‘culture’ is defined by five features,
each having one of 10 traits ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. For example, agent A might
have a cultural signature specified by traits {8, 7, 2, 5, 4} while agent B has a cultural
signature specified by traits {1, 4, 4, 8, 4}.

Unlike in the Schellingmodel, Axelrod’s agents are fixed in their lattice location and
hence their interactionpartners.Agent interaction and imitation rates are determinedby
neighbor similarity, where similarity is measured as the percentage of feature positions
that carry identical traits. With five features, if a pair of agents share exactly one such
element they are 20% similar; if two elements match then they are 40% similar, and
so on. For each iteration, the model picks a random ‘active’ agent and one of its
neighbors. With probability equal to their cultural similarity, the two sites interact and
the active agent changes one of its dissimilar elements to that of its neighbor. If agent
A {8, 7, 2, 5, 4} is chosen to be active and it is paired with its neighbor agent B {8,
4, 9, 5, 1}, for example, the two will interact with a 40% probability because they
have two elements in common. If the interaction does happen, agent A changes one
of its mismatched elements to match that of B, becoming perhaps {8, 7, 2, 5, 1}. This
change creates a similarity score of 60%, yielding an increased probability of future
interaction between the two.

In the course of approximately 80,000 iterations, the model process produces large
areas in which cultures of traits on features are identical: Axelrod’s ‘local conver-
gence.’ But arrays such as that illustrated do not typically move to full convergence.
They instead tend to produce a small number of stable and culturally isolated region-
s—groups of identical agents none of whom share features in common with adjacent
groups and so cannot further interact. As an array develops, agents interact with
increasing frequency with those with whom they become increasingly similar, inter-
acting less frequently with the dissimilar agents. With only a mechanism of local
convergence, small pockets of similar agents emerge that become increasingly homo-
geneous and increasingly isolated from other groups.

In even the simplest two-party models we’ve noted the importance of time. In two-
dimensionalmodels it can againmake a great an important differencewhether updating
is simultaneous, as in the models considered here, or random, for example. Nowak and
May instantiate fully cooperative and fully defecting strategies on a two-dimensional
array, with agents imitating the strategy of highest-scoring neighbors (Nowak &May,
1992) ([8.4]). The result is both startling images of array evolution and the persistence
of a robust percentage of both cooperative and defecting strategies. Those results,
however, rely on simultaneous updating of the array. In critique, Huberman andGlance
point out that both the startling images and results regarding persistence of cooperation
disappear when updating is random rather than simultaneous (Huberman & Glance,
1993) ([8.5]).

Although both the Schelling andAxelrodmodels embody forms of spatial influence,
neither approaches the full range such patterns can play, nor does either incorporate
elements of strategy.

Consider the game of Go, in which white and black tokens are progressively put
down onto a checkerboard by alternate players ([8.6]). In a simple form, players gain
points by either occupying points or by surrounding and thus ‘capturing’ connected
groups of the opponent’s stones. With rules such as these, neither proportions of a
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population nor the simple neighborhood association of a Schelling or Axelrod model
will dictate control of the board.

In an informational analogy, neither would be sufficient to map crucial details of
patterns of influence. With strategies in play, influence becomes more complex still,
here as in the case of strategic voting (Sect. 6).

9 Networks of influence

Two-dimensional lattices represent only one kind of interactive network: the ‘space’
of interactions need not be that of a lattice. A range of network studies thus also fall
under the rubric of influence theory.

The ‘small worlds’ of Watts and Strogatz are random networks in which local ties
of influence, picturable on a ring, are supplemented randomly with a few longer ties
across the ring. Here one relevant network measure is the average path length between
randomly chosen nodes. Another relevant measure is average clustering coefficient
for nodes of the network: the extent to which the nodes to which a node are linked
to each other, or the extent to which ‘one’s friends are friends of one another.’ More
formally, the clustering coefficient of a node is the proportion of the number of links
between its link-neighbors divided by the number of possible links between them.

A ring network has both high average clustering coefficient and high average path
length. A fully random network has both lower average path length and lower average
clustering coefficient as well. But path length and clustering coefficient do not change
at the same rate in a progression from ring to random network. Between the extremes
lie Watts and Strogatz’s ‘small worlds,’ notable for both high clustering coefficient
and relatively low average path lengths (Fig. 9) ([9.1]).

Watts and Strogatz’s ‘small worlds’ are quite immediately models of social influ-
ence. It has often been proposed that such a model characterizes the way people are

Fig. 9 The transition from a ring or regular lattice to a random network is marked by an increase in p of the
probability of link rewiring, shown on a log scale. The upper curve is that of clustering coefficient for the
network; the lower is a measure of characteristic path length
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connected to each other in actuality, with a great deal of clustering—close groups of
friends, communities, or villages—but also a few long-range links that connect those
distant groups of friends, communities, or villages. Indications of such a pattern of
influence taken from the sociological side, rather than from formal modeling, actually
appeared earlier in Granovetter 1983.

A network model that captures network formation as well as structure—a feature
noted in discussion of the Schelling model above—is the ‘preferential attachment’
model of Barabási & Albert, 1999 ([9.2]). Starting with a single node, additional
nodes are added to a network with a higher probability of forming links to nodes that
already have a higher number of links. The result is a network in which the numbers
of links held by nodes show a scale-free or power law distribution. Here again such
a model seems immediately applicable to data regarding social influence: power law
distributions seem to characterize links on the internet, book sales, academic citations
and much else. The preferential attachment model seems to capture not only common
network patterns of influence but a plausible mechanism of their formation.

In introduction we mentioned a range of purposes for influence models, includ-
ing purely formal models, applicational explanation models, and normative models
regarding optimization of certain patterns of influence. Our examples have concen-
trated on formal and potentially explanatory models, but normative models come to
the fore in recent network studies in social epistemology. What communication or
influence network between scientists, for example, each with their own research data,
will maximize scientific accuracy in the community at large? What network structure
will maximize convergence on an agreed theory?

One might think that access to more data by more investigators would inevitably
optimize the truth-seeking goals of communities of investigators. On that intuition,
faster and more complete communication—the contemporary science of the inter-
net—would allow faster, more complete, and more accurate exploration of nature.
Surprisingly, however, many of the models at issue offer a robust argument for the
potential benefits of limited communication. In the spirit of rational choice theory,
much of this work was inspired by analytical work in economics on infinite popula-
tions by Bala and Goyal (1998), computationally implemented for small populations
in a finite context and with an eye to philosophical implications by Kevin Zollman
(2007, 2010a, 2010b) ([9.3]). In Zollman’s model, Bayesian agents choose between a
current method φ1 and what is set as a better method φ2, starting with random beliefs
and allowing agents to pursue the investigatory action with the highest subjective
utility. Agents update their beliefs based on the results of their own testing results—-
drawn from a distribution for that action—together with results from the other agents
to which they are communicatively connected. A community is taken to have success-
fully learned when all agents converge on the better φ2. Zollman’s results are shown
in Fig. 11 for the three simple networks in Fig. 10. The communication network which
performs the best is not the fully connected network in which all investigators have
access to all results from all others, but the maximally distributed network represented
by the ring. But as Zollman shows, this is also that configuration which takes the
longest time to achieve convergence. The normative study of epistemically optimal
networks under different assumptions has become something of a growth industry,
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with important contributions by Hong & Page, 2004, Grim et al., 2013, Weisberg &
Muldoon, 2009, O’Connor & Weatherall, 2018, 2019, and others.

The Zollman and related models employ Bayesian techniques as their updating
rules, but Bayesian nets in general can also be seen as models of influence. In dynamic
Bayesian nets, the value of nodes at a particular iteration are shaped by Bayesian
inference on values of nodes at a previous iteration (Korb & Nicholson, 2004) ([9.4]).
With node values read as agent opinions, andt with rules written in terms of Bayesian
updating, the standard graphics for dynamic Bayesian networks show precisely the
kinds of patterns of influence we have tracked throughout (Fig. 12).

Fig. 10 A 10 person ring, wheel, and complete network

Fig. 11 Successful learning results with different network structures: ring, wheel, and complete networks
of Bayesian agents. Adapted from Zollman (2010a)
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Fig. 12 Patterns of influence as dynamic Bayesian nets. From Korb & Nicholson (2004)

10 Complexity and undecidability in one-dimensional patterns
of influence

One of the targets of influence theory is theorems regarding patterns of influence
in general. In this regard, for example, it’s clear that the complexity of even one-
dimensional patterns of influence extends to computational universality and formal
undecidability.

With just two opinions—p and ~ p or X and Y—our linear model constitutes a
one-dimensional array of cellular automata (Wolfram, 2002), standardly thought of
as extending infinitely to the left and right. We can then read formal results from the
literature of such cellular automata as results regarding the potential complexity of
patterns of influence.

Consider for example the ‘neighborhood’ of an agent together with its two imme-
diate neighbors, and the rule that if one or two agents in an agent’s neighborhood
hold position p (perhaps including itself), it will then hold position p. If no cells in
its neighborhood hold p, or if all three agents hold p, its opinion will be ~ p. Starting
from a single agent with opinion p in a field that is otherwise occupied by ‘doubters’
holding ~ p, we get the pattern of the Sierpinski triangle on successive generations
(Fig. 13) ([10.1]).

The outlined rule is that for linear cellular automata 126 inWolfram’s binary encod-
ing: 01,111,110 for a cell’s behavior given the neighborhood configurations of the
previous generation shown in Fig. 14.

Fig. 13 Against a background of ~ p (white), a single p generates the well-known Sierpinski gasket using a
rule that a cell takes a value of p if all three cells in the neighborhood are p or ~ p, a value of ~ p otherwise
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Fig. 14 Wolfram coding for linear cellular automata rules, rule 126 shown

Fig. 15 Examples ofWolfram classes as alternative dynamics of influence given different rules: convergence
on a uniform p or ~ p (class 1), stable or simple periodic states (class 2), apparent randomness (class 3),
and the more complex interacting areas of class 4

‘The fact that one-dimensional cellular automata can be interpreted as patterns of
influence means that their formal properties will hold for influence as well. With the
right rules, local influence can show any of the dynamics documented in Wolfram’s
four classes, for example: convergence on uniform p or ~ p, the establishment of stable
of simple periodic states, apparently random behavior, or complex interacting areas
(Fig. 15).

Of particular interest in this regard is a ‘right-handed’ rule 110, which differs from
126 only in that a single value of p to the left of a cell is insufficient to convert it to p
(Fig. 16).

In a result conjectured byWolfram but proven byMatthew Cook (2004), rule 110 is
computationally universal: any Turing machine can be simulated with an appropriate
initial configuration using rule 110. It follows is that the behavior of influence of
even this simple linear form is formally undecidable: algorithmically undecidable in
principle ([10.2]).

Suppose that there were a calculationwhich could tell us, with full accuracy and in a
finite number of steps, what the eventual dynamics would be of an initial configuration
of this sort using a rule such as 110. Since any Turing machine can be instantiated
as such a configuration (Cook, 2004), the algorithm we have supposed would be able
to tell us whether any arbitrary Turing machine, started on an arbitrary input, would
halt or not. By the Halting problem, we know that no Turing machine can tell us, for
arbitrary Turing machines and inputs, whether that machine will halt on that input or
not (Turing 1937). By Church’s Thesis, anything that can be computed at all can be

Fig. 16 Wolfram coding for cellular automata rule 110
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computed by some Turing machine (Wood, 1987). There can then be no algorithm and
no finite decision procedure that can predict the behavior of arbitrary linear cellular
automata arrays. Since these can map initial configurations of influence, there is no
algorithm and no finite decision procedure that can predict the outcome of arbitrary
patterns of influence.

11 Complexity and undecidability in two-dimensional patterns
of influence

Computational universality and formal undecidability were instantiated in two-
dimensional cellular automata before Wolfram’s one-dimensional case: first in the
work of John von Neumann, using a spatial neighborhood of four adjacent cells and
rules involving, in effect, 29 traits, and later in the work of John Horton Conway’s
Game of Life (Berlekamp et al., 2001).

In the Game of Life, cells with an immediate 2-dimensional neighborhood of 8,
including cells on the diagonal, take binary values of ‘alive’ or ‘dead’ according to a
simple set of rules:

If dead, come alive just in case three neighbors are alive.

If alive, remain alive just in case two or three neighbors are alive.

With ‘alive’ and ‘dead’ as holding belief p and ~ p, an information or persuasion
interpretation of Conway’s rules could take the form:

If you believe ~ p, convert to p if exactly three neighbors
are convinced of p.

If you believe p, convert to ~ p unless exactly two or three
neighbors are convinced of p.

Here agents are sensitive to their local population of opinion, but in two different ways.
A full three neighbors of the opinion p are required for an agent to convert from ~ p
to p, but more than that and the view becomes too popular and cliché, and the agent
reverts to ~ p. It is also The rules of conversion are not symmetrical: changing from p
to ~ p requires a different configuration than changing from ~ p to p.

As Conway and his followers have demonstrated in detail, the mechanisms of both
any Turing machine and any equivalent Minsky register machine can be instantiated
in two-dimensional configurations in the Game of Life. By the Halting problem, we
know that no Turing machine can tell us, for arbitrary Turing machines and inputs,
whether that machine will halt on that input or not. By Church’s Thesis, anything
that can be computed at all can be computed by some Turing machine. Thus there
can be no algorithm and no finite decision procedure that can predict the behavior of
two-dimensional cellular automata arrays. Since these can map initial configurations
of influence, there is no algorithm and no finite decision procedure that can predict
the outcome of arbitrary patterns of influence ([11.1]).
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Here again there is a connectionwith game theory. Iterative game theoretic strategies
can be instantiated as cells in the array, and with proper strategies can form the ‘wires’,
logic gates and memory units required to model any Minsky register machine. The
behavior of such machines can be constructed so as to result in an infinite ‘explosion’
of a given type of strategy or its containment in ways that parallel the undecidability
proof for the Halting Problem. Thus spatialized game theory is again an instance
of universal computability and formal undecidability in patterns of influence (Grim,
1997; Grim et al., 1998) ([11.2]).

12 Some initial lessons from influence theory

Influence theory, like decision theory and game theory, is an abstract and synoptic
venture in bringing a vast variety of different albeit related phenomena into the unified
purview on a single discipline.

Obviously the great bulk of relevant models and phenomena will come from the
diversified multitude of special situations determined by the relevant range of case
studies. What does a generalized integrating theory have to add to this? The answer is
a set of assets that no scattered collection of class studies can provide:

• a unifying perspective that reveals the commonalities of cases and lays the basis for
their classification and interrelationships.

• a view of how the specificities of cases fit them into the cognitive articulation of a
larger sphere of investigation.

• an exposition of the cross-issue commonalities of explanatory processes and pro-
cedures.

• A broader theoretical contextualism of a wide range of phenomena and a large-scale
mapping of their place in the cognitive scheme of things.

The scientific project, after all, has a highly complex mission, not only to account
for phenomena by way of description and explanation, but to give a second order
explanation of why our first-order accounts of phenomena take the form they do. Thus
science not only addresses individual cases by way of description and explanation but
attempts to find their place in a larger cognitive architecture. The organization of our
cognitive enterprise into disciplines such as influence theory is an integral part of this
larger project of scientific understanding.
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Appendix

A compendium of examples above in terms of parameters outlined in Sect. 2:
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