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Abstract
Our scientific theories, like our cognitive structures in general, consist of propositions
linked by evidential, explanatory, probabilistic, and logical connections. Those the-
oretical webs ‘impinge on the world at their edges,’ subject to a continuing barrage
of incoming evidence (Quine 1951, 1953). Our credences in the various elements of
those structures change in response to that continuing barrage of evidence, as do the
perceived connections between them. Here we model scientific theories as Bayesian
nets, with credences at nodes and conditional links between them modelled as con-
ditional probabilities. We update those networks, in terms of both credences at nodes
and conditional probabilities at links, through a temporal barrage of random incoming
evidence. Robust patterns of punctuated equilibrium, suggestive of ‘normal science’
alternating with ‘paradigm shifts,’ emerge prominently in that change dynamics. The
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suggestion is that at least some of the phenomena at the core of the Kuhnian tradi-
tion are predictable in the typical dynamics of scientific theory change captured as
Bayesian nets under even a random evidence barrage.

Keywords Bayesian networks · Scientific change · Paradigm shifts · Punctuated
equilibrium

1 Webs of belief and the impact of evidence

The model we explore here grows from suggestive remarks in Quine (1951, 1953),
further refined in Skyrms and Lambert (1995):

The totality of our so-called knowledge or beliefs, from the most casual matters
of geography and history to the profoundest laws of atomic physics or even of
puremathematics and logic, is a man-made fabric which impinges on experience
only along the edges….A conflict with experience at the periphery occasions
readjustments in the interior of thefield. Truth values have to be redistributed over
some of our statements. Reevaluation of some statements entails reevaluation of
others… (Quine 1953, p. 42)

But however attractive this picture may be, Quine does not offer any method-
ology for modeling and mapping the networks of belief….We believe that the
best framework for a precise realization of these ideas is the theory of personal
probability. The question then arises how to map a network of degrees of belief
in a way which reveals the weak and strong resistances to disconfirmation and
more generally how need for revision tends to be accommodated by the network.
(Skyrms & Lambert, 1995, pp. 139–140).

We model Quine’s webs of belief as Bayesian networks, very much along the lines
that Skyrms and Lambert suggest. Nodes represent propositions, carrying specific
credences or degrees of belief. Connections of implication and support within a theo-
retical structure are modeled by links that carry conditional probabilities. Within such
a network, evidence at one node results in a cascade of credence changes, large or
small, elsewhere in the network.1 We tend to think of theoretical networks as abstract
objects composed of linked propositions, avoiding controversies pitting credences
against ‘full’ beliefs, but the basic structural picture is the same as that invoked by
Quine, Skyrms and Lambert.

Both Quine, and Skyrms and Lambert, emphasize that it is not merely credences
at nodes that change with evidence impact. The conceptual connections between
propositions—modeled with our conditional probabilities on links—can themselves
be expected to change:

1 We use ‘evidence’ throughout, as opposed to ‘confirmation,’ as an agent- and current credence-
independent measure of data impact in terms of likelihood (Brittan & Bandyopadhyay, 2019). Details
are outlined in Sects. 3 and 4.
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Having reevaluated some statements we must reevaluate some others, which
may be statements logically connected with the first or may be statements of
logical connections themselves. (Quine 1953, p. 42)

Here we need to pay attention not only to the probabilities of statements, but also
their probabilities conditional on other statements. Conditional probabilities play
a key role as rules of inference which guide belief revision, but which themselves
are also modified in the process of belief revision. (Skyrms & Lambert, 1995,
p. 140).

It is perhaps only now, with advanced computational capabilities applied to sub-
stantial theoretical work on Bayesian nets (Pearl, 1988, 2009), that such a vision of
scientific theories and scientific change can be instantiated. We envisage scientific
theories under an evidence barrage as a variety of dynamic Bayesian networks (Korb
& Nicholson, 2004; Melynk, 2016; Murphy, 2002; Russell & Norvig, 2015). Here we
are particularly interested in the dynamics of change within networks over time, given
a continuing barrage of evidence. Different change dynamics contingent on different
network structures are to be expected. But there are also constants in change dynamics
that emerge as well: robust patterns of punctuated equilibrium that call to mind at least
some of the phenomena of ‘normal science,’ ‘revolutionary science,’ ‘paradigms’ and
‘paradigm shifts’ emphasized in a very different philosophical tradition (Kuhn, 1969;
Lakatos, 1968; Laudan, 1978).

The vagueness andmultiple meanings of core concepts in that tradition, ‘paradigm’
among them, have long been noted to be notoriously difficult to pin down in detail
(Hoyningen & Sankey, 2001; Hoyningen-Huene, 1993; Masterman, 1970; Nickles,
2003). We regard the general Kuhnian picture as a suggestive research program or
working hypothesis regarding scientific history rather than anything like an established
fact. What we have to offer is something very different: a structural model of scientific
theory with a correlate and quantitively precise model of theoretical change. What
is intriguing is that at least some of the dynamics basic to the Kuhnian picture are
predictable as typical patterns of credence change within Bayesian nets under an
evidence barrage. Our work can thus be seen as building and expanding on hints
linking Kuhn with Bayesian networks in Salmon (1990) and Hartmann (2008).

In Sect. 2, we introduce a network conception of scientific theory. In Sect. 3, we use
simple examples to outline Bayesian updating in a theoretical structure in the course of
an evidence barrage. In Sect. 4, we demonstrate punctuated equilibrium in theoretical
change across a variety of networks, with a further analysis of change dynamics in
Sect. 5. Section 6 outlines philosophical implications. Section 7 concludes with three
conjectures regarding dynamics within Bayesian models of scientific theory.

2 Theoretical structure and credence change: a Bayesian network
model

Bayesian networks have been developed, interpreted, and widely applied as models
of causal relations between events (Pearl, 1988, 2009; Spirtes, 2010; Spirtes et al.,

123



297 Page 4 of 25 Synthese (2022) 200 :297

Fig. 1 Apartial graph of the causal Alvarez theory regardingmassive extinction at the Cretaceous-Paleogene
boundary in terms of linked propositions. Sources include Jablonski and Chaloner (1994), Pope et al. (1997,
1998), Gale et al. (2001), Bardeen et al. (2017), and Henehan et al. (2019)

2000). But it is clear that they can equally well be taken as models of causal inference
between propositions descriptive of those events: as theories. One form that scientific
theories take is precisely this: a network of propositions representing causal relations
between either types or tokens of events.2 We can therefore study structural aspects
of at least one type of scientific theory by applying structural lessons from Bayesian
nets. We can construct a model of credence changes within a scientific theory, given
a barrage of evidence over time, by studying the dynamics of change within Bayesian
nets.

A partial reconstruction of the causal Alvarez theory regarding extinction at the
Cretaceous-Paleogene boundary is shown in Fig. 1. Dramatic credence change per-
colated across this theoretical network with documentation of increased sedimentary
concentrations of iridum world-wide at the Cretaceous-Paleogene boundary (Alvarez
et al., 1980; Schulte et al., 2010).

There are major assumptions in many applications of Bayesian nets with an eye
to causal inference: that relevant causal factors, direct or latent, are included in the
representation, and that independence assumptions—that changes in one variable do
not affect another—are accurate and complete. Neither of these requirements can be
defended in the case of the representation here, offered as a partial reconstruction that
captures the spirit though not the detail of a full causal theory.

2 Pearl (2009, 2018) is particularly clear about the fluidity between interpretation of nodes as causal events
or as propositions.
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Fig. 2 A reconstruction of foundational theory regarding anthropogenic climate change. Sources include
Thorpe (2005), Palmer and Stevens (2019), IPCC (2014)

Lessons from causal models can also be generalized (Climenhaga, 2019; Schaffer,
2016). The propositions within a scientific theory need not be descriptions of events,
and the relations between them need not be those of causal inference. From funda-
mental and more general hypotheses within a theory, which might be envisaged as
root nodes, multiple layers of derivative and more specific hypotheses may be inferred
(Henderson et al., 2010). That inference may be probabilistic, from general grounding
hypotheses to the more specific hypotheses they ground, modellable by conditional
probabilities precisely as in Bayesian nets—though here our arrows represent not
‘x causes y’ but ‘x supports y as an inference’ and often ‘x explains y.’3 In the other
direction, evidence formore specific or applicational hypotheses can serve in Bayesian
fashion to raise or lower confidence in the more general hypotheses from which they
can be inferred. This direction is often intuitively clearest in terms of disconfirmation:
to what extent would x be disconfirmed were its implication y disconfirmed?

A partial reconstruction of a theoretical structure of this type in the case of anthro-
pogenic climate change is shown in Fig. 2. In this case both ice-core evidence and
atmospheric data have produced important credence changes across the network
(Alley, 2000; Farman et al., 1985). As in the causal case, a full Bayesian net rep-
resentation would require all relevant grounding nodes and would correctly reflect all
dependence and independence relations. This is certainly not true of the reconstruc-
tion here, a partial reconstruction that captures the spirit though not the detail of a full
foundational structure.

3 Climenhaga (forthcoming) outlines a network approach of this type informally, intended to include
inference to the best explanation, enumerative induction, and analogical inference.
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Classical twentieth century models of inference and confirmation were couched
largely in terms of classical logic. Bayesianmodels offer awell-established alternative.
In classicalmodels, evidence for a hypothesis is also taken as evidence for propositions
logically entailed by that hypothesis. In the current model, we use inference rather than
entailment, cashed out in Bayesian terms of priors and conditional probabilities. In
classical models, evidence for a hypothesis offers confirmation for that which logically
entails that hypothesis. Here, we take evidence for a hypothesis to offer confirmation
for hypotheses fromwhich itmaybe inferred, but confirmation appears in a quantitative
Bayesian rather than the familiar qualitativeHempelian form.4 Although in accordwith
the spirit of classical philosophy of science, an image of scientific theories as Bayesian
nets offers a far more quantitative and far more nuanced view of the basic relations
of theoretical inference and evidential confirmation.5 It also offers the prospect of a
detailed model of important aspects of scientific change.

Levels of credence in the elements of a scientific theory are clearly linked, and
do not stand still. A single piece of evidence may confirm or disconfirm a partic-
ular element of a theoretical structure, raising or lowering credence at a node. But
that credence change can also be expected to percolate through the theoretical struc-
ture, both downstream—to those elements implied by the belief in question—and
upstream—to those elements in the structure that support or imply that belief. With a
screening-off assumption at each step, revised credence values for the descendants of
descendants—and parents of parents—can be calculated in the same fashion.6 What
we have in effect is a game of telephone, with revised credences percolating through
the structure of a scientific theory as a whole.

We model a scientific theory as a directed acyclic network.7 Nodes represent
proposition-like elements which carry credence values in the open interval (0,1).
The links of our model represent connections between claims within the theory. Cre-
dencechange at one point in the network produces credencechange at other points with
which it is linked. Our directed links x→ y carry weights as conditional probabilities,
allowing us to update both y conditional on a given credence at x and x by Bayesian
inference and conditioning on the basis of evidence at y.

But of course scientific theories are not tested once and for all with a single piece
of evidence. Theoretical structures are subjected to a continuing barrage of evidence
over time. We model that barrage as a series of pieces of evidence with different like-
lihoods at different nodes. A first piece of evidence at a node x in the network changes
credence at that node in the standard Bayesian manner. That new credence perco-
lates downstream, changing credences in the elements y of the theoretical structure

4 Both Reichenbach and the later Carnap’s quantitative approaches to confirmation, on the other hand, have
quite close connections with Bayesianism (Leitgeb & Carus, 2020).
5 One thing a Bayesian approach does not do, unfortunately, is solve classical paradoxes of confirmation
such as Goodman’s grue (Goodman, 1955). See Sober (1994) and Bandyopadhyay et al. (2016).
6 Backtracking will also occur. In a ‘star’ or ‘hub’ tree with one root andmany leaf nodes, change at one leaf
of the tree will affect credence upward at the root node, which will then in turn affect credence downward
at a second leaf. The importance of one-time evidential impact at different nodes within a structure, with
contrasts between impact in different networks, has been developed in Grim et al. (2022).
7 Contact of our approach with either ‘syntactic’ or ‘semantic’ models of scientific theories is remote. For
relation to these, and argument supporting superior virtues of a Bayesian model, see Skyrms (1984) and
Hartmann (2008).
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‘implied’ by x, using our conditional probabilities of c(y|x). Assuming screening off
at y—that effects further down are only via change in y— credences in further nodes
z update according to conditional probabilities c(z|y).

The rigidity condition is the assumption that conditional probabilities ‘on’ x such
as c(y|x) or c(w|x) don’t change with changes in the credence of x (Jeffrey, 1983, 1992;
Shafer, 1981). But with a credence change at x, credences upstream at parents w of x
change as well, and although conditional probabilities c(w|x) remain by the rigidity
condition, conditional probabilities c(x|w) generally do change.

Given a first piece of evidence, then, both credences and some conditional probabil-
ities in the network change. The new network, with those changed credence values and
conditional probabilities, is then subjected to another piece of evidence, at that node or
another, with changes again percolating through the structure as a whole. The result is
a model of the dynamics of theoretical change under a continuing evidence barrage. Of
particular interest is the fact that patterns evocative of punctuated equilibrium robustly
emerge in this dynamics for a wide range of simple networks, suggestive of ‘normal
science’ alternating with periods of ‘scientific revolution’ or ‘paradigm shifts’.

Some major limitations should be noted, both within this model and beyond.
Wework with extremely simple Bayesian networks, using point probabilities rather

than probability densities, imprecise or interval-valued credences (Bovens & Hart-
mann, 2003; Howson & Urbach, 1989; Pearl, 1988, 2009; Pearl &MacKenzie, 2018).
Our conditional probabilities update accordingly, inways forced by the standardBayes
theorem (Sect. 3).

Independence and screening off assumptions are particularly strong in the model.
Despite the graphs offered as illustration in Figs. 1 and 2, we do not assume that
standard scientific theories can be formulated asBayesian nets of the sortwe use simply
by treating propositions as nodes: fully formulating a theory as complicated as these
in terms of complete and accurate independence and screening off conditions would
be a major task. What we do assume is that theories in general will be characterized
by independence and screening off conditions between propositional nodes in some
given structure (Climenhaga, 2019; Henderson et al., 2010 and forthcoming); it is
those structures in the abstract that we attempt to capture in a Bayesian model of the
sort used here.

A limitation that is particularly relevant with regard to both the Kuhnian tradition
and the attempt to model scientific change in general is the fact that the networks in our
model are structurally static: neither nodes nor links are added or subtracted, though
node credences can approach (though not reach) 0 or 1 and conditional probabilities
can approach independence. Although we claim to model some intriguing dynamics
of scientific change, we cannot claim to model them all. In that regard ours should be
seen as first steps toward still richer network models of scientific change.

Beyond the models offered here, it must be admitted that there are also probabilistic
network alternatives to straight Bayesian nets, well worthy of exploration (Douven &
Schupbach, 2015). Our hope is that the exploration of Bayesian nets in particular may
motivate further work on these alternatives as well.
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3 The Bayesianmechanics of change in theoretical networks

Consider a simple theoretical structure modelled as a toy Bayesian network (Fig. 3).
Given the conditional probabilities assigned (here labelled as conditional credences)
the credences marked at each node are those that follow from a credence of 0.6 at the
root node.

Suppose, given this structure and these credences, that we offer a piece of evidence
at node b that has a likelihood of 0.25 should y be true and a likelihood of 0.75 should y
be false—a piece of evidence that we will think of as having a strength of [0.75, 0.25].
On standard Bayesian conditioning, our credence at b given that piece of evidence
changes from 0.58 to approximately 0.315:

c(b|e) � c(e|b) × c(b)

c(e|b) × c(b) + c(e|∼b) × c(∼b)

c(b|e) � 0.25 × 0.58

0.25 × 0.58 + 0.75 × 0.42
� 0.315217

But of course, a change in credence at b demands a change in credences downstream
as well. Given a new credence of 0.315 at b with the indicated conditional probability
of c given b, and assuming the evidence e affects credence at c only by way of changed
credence at b, our revised credence at c given evidence e at b changes from 0.568 to
approximately 0.673:

c(c|e) � c(c|b) × c(b|e) + c(c|∼b) × c(∼b|e)
by independence of c and e conditional on b

c(c|e) � 0.4 × 0.315217 + 0.8 × 0.684783 � 0.67319

In an extended network, with the same independence assumption at each step, changes
would continue further downstream in the same manner.

Fig. 3 A simple Bayesian network
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Standardly, credence change percolates upstream as well. Using

c(a|b) � c(b|a) × c(a)

c(b)

from Bayes, with our initial priors and conditional probabilities, we have

c(a|b) � 0.7 × 0.6

0.58
� 0.724137931

Using

c(a|∼b) � c(∼b|a) × c(a)

c(∼b)

our initial values give us

c(a|∼b) � 0.3 × 0.6

0.42
� 0.428571428

Again using an assumption of independence, the updated credence for node a, given
our new value for b on evidence e at b is

c(a|e) � c(a|b) × c(b|e) + c(a|∼b) × c(∼b|e)
by independence of a and e conditional on b

c(a|e) � 0.724137931 × 0.315217 + 0.428571428 × 0.684783 � 0.521739

Thus, credence at parent node a changes from 0.6 to approximately 0.522.
On this picture, the direct impact of evidence on a given node ramifies one step

downward to its immediate descendants and one step upward to its parents. With a
screening-off assumption at each step, revised credence values for the descendants
of those descendants—and parents of those parents—can be calculated in the same
fashion.8

With the assumption of a piece of evidence of strength [0.75, 0.25] at node b, our
credences at a, b, and c have changed from<0.6, 0.58, 0.568> to <0.522, 0.315, 0.673>.
But this is not all that changes in our network with the impact of evidence. Bayesian
networks are often used for one-shot calculations: ‘given set conditional probabilities
and evidence that the grass is wet, what must the probability be that it has rained?’
Scientific theories, on the other hand, are subjected to a continuing barrage of evidence
over time. Under a continuing evidence barrage, not only credences at individual nodes
in a Bayesian network of the form used here but conditional probabilities between
those nodes will change. These changes are forced formally by demands of network
consistency and Bayes’ theorem. In spirit, they are entirely in line with the general
picture of scientific change outlined in Quine, Skyrms and Lambert.

8 On network propagation both ‘bottom-up’ and ‘top-down’ see Lauritzen and Spiegelhalter (1988) and
Normand and Tritchler (1992).
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By the rigidity condition, probabilities conditional on b and ~b do not change: c(a|b)
and c(a|~b) in this example, as well as c(c|b) and c(c|~b). But the probabilities c(b|a)
and c(b|~a) on which b is conditional, do change; and indeed by standard Bayesian
principles they must. Our new value for a is 0.315; our new value for b is 0.673. But
were the conditional probabilities c(b|a) and c(b|~a) to retain their original values, our
value for b would be not 0.673 but

c (b|e) � c(b|a) × c (a|e) + c(b|∼a) × c (∼a|e)
� 0.7 × 0.521 + 0.4 × 0.479 � 0.5563

Were there no change in probabilities conditional on b, in other words, we’d be saddled
with an inconsistent network.

What Bayes requires is that we replace our initial conditional probabilities c(b|a)
and c(b|~ a) with posterior conditional probabilities which we will term c′(b|a) and
c′(b|~ a).9 Here we use c(a|b) and c(a|~b), calculated as above, which by rigidity do
not change. By Bayes,

c′(b|a) � c(a|b) × c(b|e)/c(a|e) � 0.437499566

c′(b|∼a) � c(∼a|b) × c(b|e)/c(∼a|e) � 0.181817906

Use of these posterior conditional probabilities gives us a consistent network with
our value of 0.315 for b|e:

c(b|e) � c′(b|a) × c(a|e) + c(b|∼a) × c(∼a|e)
� 0.4375 × 0.521 + 0.1818 × 0.479 � 0.315

Evidence of strength [0.75, 0.25] at node b has therefore not merely changed cre-
dences at other nodes, but in terms of conditional probabilities has changed the network
as a whole. This updating for conditional probabilities is effectively incorporated in
standard programming for Bayesian networks such as aGrum and pyAgrum, which
we’ve employed for simulations throughout (Ducamp et al., 2020; Gonzales et al.,
2017).

Incorporating posterior credences and posterior conditional credences, what we
might think of as our posterior network appears in Fig. 4.

As a scientific theory, of course, such a network is subject to further evidence aswell.
We suppose evidence of strength [0.35, 0.65] at node c. Given that evidence and this
network, using the same Bayesian calculations as above, our network is transformed
again. That new network appears on the extreme right of Fig. 5, which tracks network
changes through our two evidence ‘hits.’

Scientific theories are not tested with a single piece of evidence, once and for
all. They are subject to a continuing incoming barrage of evidence, with credence in
individual elements of the theory and in the connection between them changing over
time. Our attempt is to model what the change dynamics of theoretical networks look

9 Here we are particularly grateful to Jim Joyce.

123



Synthese (2022) 200 :297 Page 11 of 25 297

Fig. 4 Transformation of network in this figure given evidence of strength [0.75, 0.25] at node b, with values
rounded off to the fourth decimal place

Fig. 5 Transformation of network in given successive evidence inputs, values rounded the fourth decimal
place

like under a continuing barrage of evidence—a longitudinal study within a Bayesian
model very much in the spirit of Quine, Skyrms and Lambert.

In the calculation above we have tracked credence changes node by node. As a
metric of credence change across a network as a whole, we can use Brier divergence
(Brier, 1950). The difference between prior and posterior probability distributions
is taken to be the mean of the squared difference between the prior and posterior
probability attached to each proposition in the network.10 Formally:

10 There are of course alternative measures. Brier divergence instantiates a difference measure between
posterior and prior credences, |c(x|e) − c(x)|, as a measure of impact. An alternative would be to build
on a ratio measure c(x|e)/c(x). Although alternative measures would of course change the absolute values
of change, in neither this example nor in general would that appear to make any difference in the general
patterns of network change under an evidence barrage. The question of appropriate metrics for evidence
impact is closely allied with the question of appropriate metrics for degree of confirmation. Crupi et al.
(2007) offers a very useful overview of the latter.
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Fig. 6 For the network used in Figs. 3 through 5, node credences under a random evidence barrage. 3000
iterations shown

DBrier(p, q) :� 1

n

n∑

i�1

(p(Ai ) − q(Ai ))
2

where p and q are probability measures. In the case of the first evidence impact illus-
trated in Fig. 5 above, the network moves from credences of <0.6, 0.58, 0.568> to
<0.5217, 0.3152, 0.6739> , with rounded values used for simplicity. The Brier diver-
gence from step one to step two is therefore approximately 0.0292. From step two to
step three credences start at the previous network transformation values of <0.5217,
0.3152, 0.6739> and shift to <0.5079, 0.2683, 0.7933> , giving us a Brier divergence
of approximately 0.0056.

4 Network transformations under an evidence barrage

What does a pattern of network transformations look like under a continuing barrage
of evidence over time? Here we continue to hit the network outlined above with such a
barrage, choosing a random node at each iteration and a piece of evidence of strength
[1 − x, x] for a random real value x in the interval (0.1, 0.9). Were we to draw from
a full (0, 1) interval we would include effects that might be due merely to occasional
pieces of overwhelming evidence, since it is the Bayes factor in terms of the ratio of the
two elements of the vector that dictates evidence strength (Kass & Raffery 1995). By
clipping the ends of a (0, 1) interval to (0.1, 0.9) we avoid that potential distraction.11

At each impact we update both credences and conditional probabilities as outlined
above, representing thenewnetwork thatwill be subjected to the next piece of evidence.
A first way of envisaging network changes is in terms of changing credences at each
node. For one series of 3000 random evidence hits, the pattern of node credences in
the network outlined above is shown in Fig. 6.

The corresponding pattern in terms of Brier divergence across the network as a
whole is shown in Fig. 7.

11 Here we are grateful for the suggestion of an anonymous referee.
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Fig. 7 For the network used in Figs. 3 through 5, Brier divergence under the random evidence barrage used
in Fig. 6. 3000 iterations shown

Credence changes andBrier divergence for the same network under another random
evidence barrage is shown in Figs. 8 and 9.

Our focus in what follows is the clear qualitative features of these typical patterns,
an analysis of their dynamics, and what we take to be the philosophical significance

Fig. 8 For the network used in Figs. 3 through 5, node credences under a second random evidence barrage.
3000 iterations shown

Fig. 9 For the network used in Figs. 3 through 5, Brier divergence under the random evidence barrage used
in Fig. 8. 3000 iterations shown
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of these with regard to theoretical change. Of particular note is the fact that these
graphs show (a) distinctive periods of intense activity in terms of divergence between
iterations under random evidence impact, together with (b) clear periods of flat calm,
with very little divergence between iterations under evidence impact. Although evident
in terms of credence change graphed node by node, patterns are particularly clear when
viewed in terms of Brier divergence across the network as a whole. In Figs. 10 and
11 we extend iterations from 3000 to 30,000 in each case, demonstrating that with
different intervals the qualitative pattern of punctuated equilibrium continues.

We also offer a slightly more complex theoretical network—the all-too-familiar
water sprinkler example of a Bayesian net, here cast as a simple causal theory (Fig. 12).

The initial credences shown for each proposition in Fig. 12 are those that follow
from a credence of 0.5 at the root node using the conditional probabilities shown. These
values are standard for this familiar example except that we have avoided conditional
values of full strength, 0 or 1. In this example we again subject the theoretical network
to a barrage of successive evidence of strength [1 − x, x] for a random real value x
in the clipped interval (0.1, 0.9). Both credences and conditional probabilities change
as outlined. Brier divergences from iteration to iteration for this theoretical structure
under a continuing evidence barrage are shown in Fig. 13.

In the water sprinkler example, as in the simple linear network, patterns of change
under an evidence barrage show distinct periods of (a) intense activity in terms of
divergence from iteration to iteration together with (b) periods of calm: a pattern of
punctuated equilibrium (Eldredge & Gould, 1972, 2007; Gould & Eldredge, 1977).

Fig. 10 Brier divergence under the random evidence barrage used in Figs. 6 and 7. 30,000 iterations shown

Fig. 11 Brier divergence under the random evidence barrage used in Figs. 8 and 9. 30,000 iterations shown
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It’s cloudy
0.5

c(r|c) = 0.8
c(r|~c) = .02

c(s|c) = 0.9
c(s|~c) = 0.5

It’s raining
0.5

The sprinklers are on
0.3

c(w|~r,~s) = 0.01
c(w|~r,s) = 0.9
c(w|r,~s) = 0.9
c(w|r,s) = 0.99

The grass is wet
0.65

Fig. 12 The ubiquitous Bayesian water sprinkler example, here as a simple causal theory

Fig. 13 Brier divergence between iterations in thewater sprinkler network in Fig. 10 under a randomevidence
barrage

The evidence barrages we’ve used to this point consist of pieces of evidence of
random strength impacting randomly selected nodes. Evidence impacting randomly
selected nodes, however, might be thought to be counter-intuitive in light of our inter-
pretation of networks as theoretical structures. A theoretical structuremight be thought
of as ‘impinging on experience at its edges,’ in Quine’s phrase, with impacts primarily
at the ‘periphery.’ In Fig. 14 we use the same series of random evidence strengths, but
hit our nodes with a graduated probability toward the periphery. In this case the leaf
node ‘grass is wet’ is impacted eight times out of every thirteen, the middle nodes each
two times out of thirteen, and the root node only once every thirteen times. As is to be
expected, the pattern of change in Fig. 13 differs from Fig. 14. But here too a quali-
tative pattern of periods of relative stasis interrupted by periods of intense divergence
is clear.

In the next section we offer a simple explanation for this punctuated equilibrium
dynamic, followed by an outline of the philosophical lessons suggested by such a
model.
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Fig. 14 Brier divergence between iterations in the water sprinkler network with a random evidence barrage
targeted differentially toward the leaf node

5 Understanding punctuated equilibrium in Bayesian nets

Why does a random evidence barrage produce a punctuated equilibrium pattern of
credence change in Bayesian nets? It is clear from the figures above that the specific
pattern of change dynamics—the specific pattern of periods at which the network is
quiescent and at which it is volatile—depends on the specifics of the random evidence
series to which a network is subjected. But regardless of the specifics of the random
series of nodes and evidencevalues used as the evidencebarrage, patterns of punctuated
equilibrium appear robustly in the change dynamics. Why?

A potential answer is not far to seek. On standard Bayesian principles, a node with
credence close to an extreme of either 0 or 1 will be more resistant to change in the
face of evidence than will a node with credence farther from these extremes. By the
same token, a network comprised of nodes close to either 0 or 1 will be relatively
resistant to change when presented with evidence.12 We thus offer the explanatory
hypothesis that the quasi-equilibrium periods in the history of a Bayesian net under
evidential barrage are those points at which its credences approach extremes of 0 or 1;
the punctuated periods of volatility are those points at which its credences have been
nudged from those extremes.

Figure 15 offers confirmation for such a hypothesis. For each iteration in Fig. 7, we
graph the Brier divergence of the network at that point from a ‘constant distribution’
network in which each node takes a credence of either 0 or 1, whichever is closest
to that node’s current value. Higher values in Fig. 15 thus represent networks farther
from node values of 0 and 1; lower values represent networks closer to node values
of 0 and 1. Comparison shows that stable periods in Fig. 7 correspond to periods in
which node distances from 0 or 1 are vanishingly small; periods of volatility correlate
with periods in which at average node distance is further from those polar values. An
overlay of Figs. 7 and 15, emphasizing the point, appears as Fig. 16.

Figure 17offers a similar confirmation in thewater sprinkler case inFig. 13, showing
a clear correspondence between (a) Brier divergence from a ‘constant distribution’ of

12 Though we emphasize the role of extreme credences here, a related point will hold for conditional
probabilities: conditional probabilities such that p(a|b) � p(a|~ b) will preserve stasis, whereas those which
vary from that equality will favor change.
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Fig. 15 For comparisonwith Fig. 7: Brier divergence at each iteration of a the credence values of the network
shown in Fig. 6 from b a constant distribution in which node credence are replaced with whichever is closer,
0 or 1

Fig. 16 An overlay of Brier divergence from previous iteration (black) as in Fig. 7, with Brier divergence
from a constant distribution (red) as in Fig. 15

Fig. 17 For comparison with Fig. 13: Brier divergence at each iteration of a the credence values of the water
sprinkler network shown in Fig. 9 from b a constant distribution in which node credence are replaced with
whichever is closer, 0 or 1
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Fig. 18 An overlay of Brier divergence from previous iteration (black) as in Fig. 13, with Brier divergence
from a constant distribution (red) as in Fig. 17

node values of 0 and 1 and (b) volatility in the dynamics of credence change in the
network. An overlay of Figs. 13 and 17, emphasizing the point, appears as Fig. 18. A
similar correspondence between (a) and (b) holds for the other examples, and in every
case that we have explored in the course of investigation.13

It should be noted that a network that settles down to node values close to 0 and 1 at
different points of stasis doesn’t always settle down to the same network node values.
In the dynamics of our three-node network shown in Figs. 6 and 7, for example, node
values <a, b, c> at iteration 500 approach <0, 0, 1>. At iteration 900, they approach
<0, 0, 0> instead. At iteration 1600 they approach <1, 1, 0>. Figure 19 uses three
dimensions, one for each node, to graph the credence values of the three nodes in the
course of the evidence barrage. In the supplementary materials we offer a movie of
credence value change through 30,000 iterations of this barrage.

There may be an analog far stronger than mere metaphor between mechanisms of
punctuated equilibrium in biological evolution and the patterns of change we trace
in Bayesian networks under an evidence barrage. With diffusion equations modeling
probability distributions of mean phenotypes with genetic drift on a landscape with
several adaptive peaks, Lande (1985) builds on work by Simpson (1944, 1953) and
suggestions in Wright (1977), showing a pattern of long periods of relative stasis
interrupted with short periods of change between peaks:

The time for the final transition between adaptive peaks is expected to be orders
ofmagnitude shorter than the time the population initially spends drifting around
the original adaptive peak… (Lande, 1985 p. 7644)

Barton and Charlesworth (1984) show a similar pattern with a formula taken from
chemical physics.

These evolutionarymodels lack both the network structure and the specificBayesian
dynamics of the present model, and are of course applied to biological evolution rather
than scientific theory change. What they have in common with the current model are

13 In cases in which we exempt nodes entirely from evidential impact, periods of stasis may occur when
those exempted nodes are not near 0 or 1. In these cases we have a higher but constant line in periods of
stasis in the equivalents of Figs. 11 and 12 simply because of a constant non-extreme value in the exempted
node.
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Fig. 19 A three-dimensional representation of credence values for the three nodes of the network used in
Figs. 3 through 5 in the course of the evidence barrage shown in Figs. 6 and 7, 15 and 16. A complete
animation is available in the supplementary materials

periods of ‘stickiness,’ at adaptive peaks in the biological case and extreme priors
in the case of Bayesian networks. It is that stickiness that shows up as periods of
stasis, with quick shifts between those periods on the basis of either dynamic. There
are also tantalizing hints that the network structure of the current model may echo
co-evolutionary structures that may be of importance in the dynamics and rates of
evolutionary change (Taper & Case, 1992).14

6 Normal science, paradigm shifts, and the punctuated equilibrium
of scientific change

We suggest that a Bayesian network model of the structure of scientific theory, plau-
sible in its own terms, offers a new understanding of at least some of the phenomena
of scientific change that have been the foci of a very different, purely qualitative, and
historically oriented tradition in the philosophy of science. At least some of the phe-
nomena at the core of theKuhnian tradition are predictable without elaborate historical
context, predictable in the typical dynamics of scientific theory change captured sim-
ply as Bayesian nets under a barrage of incoming evidence. One might think that a
(bordered) random evidence barrage of the sort employed in the current model would
produce an equally random-looking pattern of credence changes in the network: noise

14 We are grateful to an anonymous referee for bringing these models to our attention.
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in and noise out. What our results indicate is that this is not the case. In response
to even a bordered random input, the dynamics of credence change in Bayesian nets
result in a pattern of punctuated equilibrium.

We should emphasize that the model seems to capture some Kuhnian phenomena.
The vagueness and multiple meanings of ‘paradigm’ in the Kuhnian tradition have
long been remarked upon, together of course with companion concepts of ‘paradigm
shift,’ ‘normal science,’ and ‘revolutionary science’ (Masterman, 1970). Emphasis
is sometimes put on paradigms as sets of scientific habits, experimental traditions,
or complexes of puzzle-solving techniques. In this sense Kuhn analyzes tests for
‘goodness of air’ in Priestley and Lavoisier as paradigms, for example (Kuhn, 1969,
59–60). More centrally, however, the tradition glosses ‘paradigms’ as sets of received
beliefs (Kuhn 4–5), views of nature (2–3), successful theories (17–18), or the scientific
achievements of major bodies of theory: “Aristotle’s Physica, Ptolemy’s Almagest,
Newton’s Principia and Optics, Franklin’s Electricity, Lavoisier’s Chemistry and
Lyell’s Geology” (10). It is something like paradigms in this latter sense that our
model best captures. At least some of the basic dynamics predicted in the Kuhnian
model regarding paradigms in this sense, dynamics commonly emphasized in his-
torical examples, and dynamics that continue to motivate researchers in the Kuhnian
tradition, appear robustly and unforced in a simple Bayesian model of scientific theory
and credence change.

If scientific theories or cognitive systems in generaldohave something like the struc-
ture of Bayesian nets, even a random barrage of evidence can be expected to produce
something far from random: a punctuated equilibrium characterized by periods of rel-
atively little credence change—the characteristic of ‘normal science’—interrupted by
periods of credence volatility—characteristic of ‘scientific revolutions’ or ‘paradigm
shifts.’15

7 Three conjectures

We conclude with two conjectures regarding application of the current model to other
networks and a third conjecture concerning the robustness of punctuated equilibrium
across model variations.

Conjecture 1 In general, networks that are more complex in terms of number of nodes
will show longer periods of both stasis and volatility on the current model.

This seems plausible on the grounds that a longer series of random evidence ‘hits’
will generally be required to drive a network with more nodes to a point at which
all node values approach 0 and 1. By the same token, a longer evidence barrage may
be required to drive a network that is close to fixation into an alternative. This is not

15 With regard to punctuated equilibrium, Gould himself characterizes Kuhn as “The most influential
punctuationalist theory in twentieth century scholarship” (Gould, 2007, p. 276) and credits his reading
of Kuhn as a major impetus behind the evolutionary theory (Gould, 1989, 2007). It has not escaped our
notice that the dynamics tracked for Bayesian networks offers an intriguing explanation for punctuated
equilibrium in evolutionary change as well: an ecological network explanation as an alternative to the
traditional explanation in terms of allotropic speciation (Eldredge & Gould, 1972; Mayr, 1954; Simpson,
1944, 1953).
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of course to deny that there will be cases where change in a single node can cause a
cascade across even a large and complex network.

To the extent that conjecture 1 holds, on the model for scientific theories offered
here, more complex and elaborated theories will show longer periods of little change
in the manner of ‘normal science,’ but also longer periods of punctuated ‘scientific
revolution’ in the form of volatile credence change.

Conjecture 2 In general, more sparsely connected networks—those with fewer links
between nodes—will bemore resistant to change on the currentmodel, showing longer
periods of both stasis and volatility.16

This seems plausible because the impact of change at a node will percolate to those
nodes to which it is connected, ‘decaying’ in impact to nodes beyond nodes. The more
connected a network, the more the direct impact of change at any one node will tend
to be.

On the model for scientific theories offered here, if both conjectures 1 and 2 hold
up it will be theoretical structures elaborated in terms of many propositions but with
fewer implicational links between them that will show longer periods of both ‘normal’
and ‘revolutionary’ science.

Conjecture 3 The qualitative patterns of punctuated equilibrium documented here will
prove robust across major model variations.

As noted initially, the model offered here involves some major limitations. We have
worked throughout with simple Bayesian nets employing point probabilities, but
conjecture that very similar results will hold for more sophisticated models using
interval-valued credences. Any scientific network can be expected to involve inde-
pendence and screening off conditions, but those used in our sample networks are
particularly strong. We conjecture that similar results will appear with different pat-
terns of independence and screening off, though precisely how dynamics vary with
those aspects of structure is a large question calling for further work. We have also
worked throughout with random evidence within a wide but bounded range, far wider
than can be expected in general for evidential variance and a ‘shaking hand’ of inac-
curacy. Our informal explorations of far narrower ranges of randomness continue to
show punctuated equilibrium, though with smaller swings in Brier divergence and
more widely separated periods of stasis.

Our conjecture that qualitative results will prove generally robust is grounded in the
explanation for observed dynamics offered in Section 5. The punctuations of punctu-
ated equilibrium are due to accumulated effects of variations in incoming evidence.
Equilibria form as Bayesian credences are pushed nearer the poles and thusmore resis-
tant to change. Although the details can be expected to change, the basic dynamics of
punctuated equilibrium can be expected to hold across Bayesian models in general.

There are other limitations in the current model which this does not address. There
are for example probabilistic network alternatives to the Bayesian nets explored here
(Douven&Schupbach, 2015).Weconsider thesewellworthyof exploration. It remains

16 As noted by a referee, the extreme case of a networkwith no connections would be immune to contagious
changes.
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an open but intriguing question to what extent the patterns of theoretical change doc-
umented here will characterize alternative plausible models as well.

A limitation thatwe’ve noted as particularly relevantwith regard to both theKuhnian
tradition and the attempt to model scientific change is the fact that the networks within
our model are structurally static: though both credences and conditional probabilities
can change radically, neither nodes nor links are added or subtracted. Better models
are needed in order to capture that aspect of scientific change as well.

8 Conclusion

An attractive vision of scientific theories as networks of propositions—as webs of
belief—comes to us from Quine (1951, 1953), with some first steps toward formaliza-
tion in Skyrms and Lambert (1995). Contemporary network theory offers the prospect
of a deeper and more detailed understanding of how evidence sensitivity, ‘falsifiabil-
ity,’ and propensity to change play out across different forms of theory envisaged as
different propositional networks. An invitation to focus on the dynamics of scientific
change comes to us from the Kuhnian tradition, with an appealing but vague vision
of normal science punctuated by periodic scientific revolutions (Kuhn, 1969; Lakatos,
1968; Laudan, 1978). Bayesian and other forms of updating dynamics on networks
offer the prospect of more precise models of scientific stability and change, across a
range of metrics, and at least in the abstract.

Ours is intended as a first step in the exploration of the dynamics of scientific the-
ory change using Bayesian network models. Using Brier divergence from iteration to
iteration as a metric, change dynamics within such a model show a distinct pattern of
punctuated equilibrium under random and periphery-targeted evidential barrages. Our
suggestion is that these precise and quantitative phenomena, derivable from network
structure alone, capture at least some of the phenomena long noted qualitatively in
the Kuhnian tradition of normal science and paradigm shifts. The conjectures we’ve
offered, if true, would extend both that formal analysis and its philosophical implica-
tions.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11229-022-03720-z.
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